Skip to main content
Log in

The Minimum Vulnerability Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We revisit the problem of finding \(k\) paths with a minimum number of shared edges between two vertices of a graph. An edge is called shared if it is used in more than one of the \(k\) paths. We provide a \({\lfloor {k/2}\rfloor }\)-approximation algorithm for this problem, improving the best previous approximation factor of \(k-1\). We also provide the first approximation algorithm for the problem with a sublinear approximation factor of \(O(n^{3/4})\), where \(n\) is the number of vertices in the input graph. For sparse graphs, such as bounded-degree and planar graphs, we show that the approximation factor of our algorithm can be improved to \(O(\sqrt{n})\). While the problem is NP-hard, and even hard to approximate to within an \(O(\log n)\) factor, we show that the problem is polynomially solvable when \(k\) is a constant. This settles an open problem posed by Omran et al. regarding the complexity of the problem for small values of \(k\). We present most of our results in a more general form where each edge of the graph has a sharing cost and a sharing capacity, and there is a vulnerability parameter \(r\) that determines the number of times an edge can be used among different paths before it is counted as a shared/vulnerable edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The runtime can be slightly improved to \(O({m ^ {2(k-1)}} {n ^ {3}})\) by discarding all cuts with no vulnerable edge in the cut sequences, and hence, by only considering cuts of size less that \(k\), as mentioned in the preliminary version of this work [1].

References

  1. Assadi, S., Emamjomeh-Zadeh, E., Norouzi-Fard, A., Yazdanbod, S., Zarrabi-Zadeh, H.: The minimum vulnerability problem. In: Proceedings of the 23rd International Symposium on Algorithms and Computation, Volume 7676 of Lecture Notes in Computer Science, pp. 382–391 (2012)

  2. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

  3. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capacitated network design. In: Proceedings of the 15th International Conference on Integer Programming and Combinatoral Optimization, Volume 6655 of Lecture Notes in Computer Science, pp. 78–91 (2011)

  4. Chakrabarty, D., Krishnaswamy, R., Li, S., Narayanan, S.: Capacitated network design on undirected graphs. In: Proceedings of the 16th International Workshop on Approximation Algorithms, Volume 8096 of Lecture Notes in Computer Science, pp. 71–80 (2013)

  5. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows and the covering steiner problem. ACM Trans. Algorithms 1(1), 74–101 (2005)

    Article  MathSciNet  Google Scholar 

  6. Franklin, M.K.: Complexity and security of distributed protocols. Ph.D. thesis, Depatment of Computer Science, Columbia University (1994)

  7. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  8. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

  9. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hajiaghayi, M., Khandekar, R., Kortsarz, G., Nutov, Z.: On the fixed cost \(k\)-flow problem and related problems. arXiv:1108.1176 (2011)

  12. Konjevod, G., Ravi, R., Srinivasan, A.: Approximation algorithms for the covering steiner problem. Random Struct. Algorithms 20(3), 465–482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krumke, S.O., Noltemeier, H., Schwarz, S., Wirth, H.-C., Ravi, R.: Flow improvement and network flows with fixed costs. In: Proceedings of the International Conference on Operation Research: OR-98, pp. 158–167 (1998)

  14. Omran, M.T., Sack, J.-R., Zarrabi-Zadeh, H.: Finding paths with minimum shared edges. J. Comb. Optim. 26(4), 709–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Yang, M., Yang, B., Zheng, S.Q.: Dual-homing based scalable partial multicast protection. IEEE Trans. Comput. 55(9), 1130–1141 (2006)

    Article  Google Scholar 

  16. Yang, B., Yang, M., Wang, J., Zheng, S.Q.: Minimum cost paths subject to minimum vulnerability for reliable communications. In: Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks, pp. 334–339. IEEE Computer Society (2005)

  17. Zheng, S.Q., Wang, J., Yang, B., Yang, M.: Minimum-cost multiple paths subject to minimum link and node sharing in a network. IEEE/ACM Trans. Netw. 18(5), 1436–1449 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jörg-Rüdiger Sack and Masoud T. Omran for their valuable discussions on the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Zarrabi-Zadeh.

Additional information

This research is partially supported by IPM under Grant No. CS1391-4-04.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, S., Emamjomeh-Zadeh, E., Norouzi-Fard, A. et al. The Minimum Vulnerability Problem. Algorithmica 70, 718–731 (2014). https://doi.org/10.1007/s00453-014-9927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9927-z

Keywords

Navigation