Skip to main content
Log in

Colloidal Gold Nanoparticles: An Unexpected Catalytic Activity in Aqueous Phase with Dioxygen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective oxidations of alkenes were investigated using molecular oxygen in aqueous solution under mild conditions. Colloidal gold nanoparticles are particularly versatile catalysts for oxidation reaction with exceptionally high efficiency and significant selectivity. Gold nanorods (Au NRs) exhibited a slightly enhanced activity compare to gold nanospheres.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  2. Wiley B, Sun Y, Xia Y (2007) Acc Chem Res 40:1067–1076

    Article  CAS  Google Scholar 

  3. Herricks T, Chen J, Xia Y (2004) Nano Lett 4:2367–2371

    Article  CAS  Google Scholar 

  4. Pastoriza-Santos I, Liz-Marza´n LM (2009) Adv Funct Mater 19:1–10

    Article  Google Scholar 

  5. Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  6. Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454–463

    Article  CAS  Google Scholar 

  7. Xia Y, Li W, Cobley CM, Chen CJ, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Acc Chem Res 44:914–924

    Article  CAS  Google Scholar 

  8. Huang X, Neretina S, El-Sayed MA (2009) Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  9. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  10. Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  11. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  12. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chem Commun 5:544–557

    Article  Google Scholar 

  13. Yu C, Irudayaraj J (2007) Anal Chem 79:572–579

    Article  CAS  Google Scholar 

  14. Xiaohua Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  15. Parab HJ, Jung C, Lee J, Park HG (2010) Biosens Bioelectron 26:667–673

    Article  CAS  Google Scholar 

  16. Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L (2010) Biosens Bioelectron 26:404–410

    Article  Google Scholar 

  17. Singh AK, Senapati D, Wang Sh, Griffin J, Neely A, Candice P, Naylor KhM, Varisli B, Kalluri JR, Ray PC (2009) ACS Nano 3:1906–1912

    Article  CAS  Google Scholar 

  18. Sudeep PK, Shibu Joseph ST, Thomas KG (2005) J Am Chem Soc 127:6516–6517

    Article  CAS  Google Scholar 

  19. Maltzahn GV, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Cancer Res. doi:10.1158/0008-5472.CAN-08-4242

    Google Scholar 

  20. Deng X, Min BK, Guloy A, Friend CM (2005) J Am Chem Soc 127:9267–9270

    Article  CAS  Google Scholar 

  21. Turner M et al (2008) Nature 454:981–983

    Article  CAS  Google Scholar 

  22. Hughes MD et al (2005) Nature 437:1132–1135

    Article  CAS  Google Scholar 

  23. Stephen A, Hashmi K, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936

    Article  CAS  Google Scholar 

  24. Comotti M, Pina CD, Matarrese R, Rossi M (2004) Angew Chem Int Ed 43:5812–5815

    Article  CAS  Google Scholar 

  25. Hosseini-Monfared H, Meyer H, Janiak C (2013) J Mol Catal A 372:72–78

    Article  CAS  Google Scholar 

  26. Peixoto de Almeida M, Martins LMDRS, Carabineiro SAC, Lauterbach T, Rominger F, Hashmi ASK, Pombeiro AJL, Figueiredo JL (2013) Catal Sci Tech 3:3056–3069

    Article  CAS  Google Scholar 

  27. Yoon B, Hakkinen H, Landman U (2003) J Phys Chem A 107:4066–4071

    Article  CAS  Google Scholar 

  28. Gao M, Lyalin A, Takestsugo T (2012) Int J Quantum Chem. doi:10.1002/qua.24066

    Google Scholar 

  29. Obare SO, Jana NR, Murphy CJ (2001) Nano Lett 1:601–603

    Article  CAS  Google Scholar 

  30. Cai Z, Zhu M, Chen J, Shen Y, Zhao J, Tang Y, Chen X (2010) Catal Commun 12:197–201

    Article  CAS  Google Scholar 

  31. Yang Z, Kang Q, Ma H, Li C, Lei Z (2004) J Mol Catal A Chem 213:179–269

    Article  Google Scholar 

  32. Tong JH, Zhang Y, Li Z, Xia CG (2006) J Mol Catal A Chem 249:47–52

    Article  CAS  Google Scholar 

  33. Weiner H, Trovarelli A, Finke RG (2003) J Mol Catal A Chem 191:217–252

    Article  CAS  Google Scholar 

  34. Gittins DI, Caruso FJ (2001) J Phys Chem B 105:6846–6852

    Article  CAS  Google Scholar 

  35. Mayya KS, Schoeler B, Caruso F (2003) Adv Funct Mater 13:183–188

    Article  CAS  Google Scholar 

  36. Gole A, Murphy C (2005) J Chem Mater 17:1325–1330

    Article  CAS  Google Scholar 

  37. Alkilany AM, Thompson LB, Murphy C (2010) J Appl Mater Interfaces 2:3417–3421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Gholami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, H., Robatjazi, H., Hormozi-Nezhad, M.R. et al. Colloidal Gold Nanoparticles: An Unexpected Catalytic Activity in Aqueous Phase with Dioxygen. Catal Lett 144, 1219–1222 (2014). https://doi.org/10.1007/s10562-014-1255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1255-z

Keyword

Navigation