Skip to main content
Log in

Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Previous research suggested that Ricinus communis may be used for soil remediation and oil production. However, the quality of the oil and bioproducts under polluted conditions need to be tested to be assured of their potential use in biofuel production with environmentally friendly bioproducts (cake, seed coats and biomass). Oil characteristics and metal concentrations in oil, cake (de-oiled seeds) and seed coats, as well as the shoot carbon content were analyzed. The oil contents of palmitic and oleic acids from plants growing in polluted mine tailings were comparable to those for plants grown under non-polluted conditions. Linoleic acid content was significantly higher in oil of plants from mine tailings, which enriches the fuel properties. Cadmium and lead were mainly concentrated in the seed coat, whereas copper in the cake. Castor bean oil had low concentrations of cadmium, lead, zinc, nickel, manganese and copper-free. Cake and seed coats can be useful for soil fertilization applications since the metal concentrations are below safety regulations. The biomass carbon was around 43 %, which suggests it may be used for biogas production. These properties make castor bean valuable for its oil and bioproducts even when growing at metal-polluted sites. However, agronomic optimization is needed in order to produce higher plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen HE (2001) Terrestrial ecosystem: an overview. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for availability to invertebrates, microbes and plants. SETAC Press, Pensacola, pp 1–6

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Springer, Glasgow

    Book  Google Scholar 

  • Benavidez J, Cadena A (2011) Políticas y capacidades de investigación y desarrollo e innovación (I&D + I) para el desarrollo de biocombustibles en América Latina y el Caribe. In: Rodríguez A (ed) Investigación y desarrollo e innovación para el desarrollo de los biocombustibles en América Latina y el Caribe, Serie Seminarios y Conferencias No. 68. Naciones Unidas CEPAL, Santiago de Chile, pp 11–48

    Google Scholar 

  • Boza S, Saucedo A (2011) Análisis comparativo de patentes en la cadena de producción de biocombustibles entre América Latina y el resto del mundo. In: Rodríguez A (ed) Investigación y desarrollo e innovación para el desarrollo de los biocombustibles en América Latina y el Caribe, Serie Seminarios y Conferencias No. 68. Naciones Unidas CEPAL, Santiago de Chile, pp 49–79

    Google Scholar 

  • Caye MD, Nhuan P, Terry HW (2008) Biofuels engineering process technology. McGraw-Hill, USA

    Google Scholar 

  • Chen B, Shan XQ, Qian J (1996) Bioavailability index for quantitative evaluation of plant availability of extractable soil trace elements. Plant Soil 186:275–283

    Article  CAS  Google Scholar 

  • Conceicao MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ Jr, Souza AG (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev 11:964–975

    Article  CAS  Google Scholar 

  • Conesa HM, María-Cervantes A, Álvarez-Rogel J, González-Alcaraz MN (2013) Role of rhizosphere and soil properties for the phytomanagement of a salt marsh polluted by mining wastes. Int J Environ Sci Technol. doi:10.1007/s13762-013-0323-z

    Google Scholar 

  • Cortés-Jiménez EV, Mugica-Álvarez V, González-Chávez MC, Carrillo-González R, Martínez Gordillo M, Mier MV (2013) Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico. Int J Phytoremediation 15:127–141

    Article  Google Scholar 

  • de Parente EJS (2003) Biodiesel: UMA aventura tecnológica num país engraçado. Tecbio, Fortaleza, p 68

    Google Scholar 

  • Deligiannis A, Anastopoulos G, Karavalakis G, Mattheou L, Karonis D, Zannikos F, StournasS, Lois E (2009) Castor (Ricinus communis L.) seed oil as an alternative feedstock for the production of biodiesel. Proceeding of the 11th international conference on environmental science and technology, Chania, Crete, Greece

  • DeOliveira JS, Leite PM, de Souza LB, Mello VM, Silva EC, Rubim JC, Meneghetti SMP, Suarez PAZ (2009) Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 33:449–453

    Article  CAS  Google Scholar 

  • Dubey A, Shiwani S (2012) Adsorption of lead using a new green material obtained from Portulaca plant. Int J Environ Sci Technol 9:15–20

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1992) Acid digestion of sediments, sludge, and soils. Method 3050, Washington, USA

  • EPA (Environmental Protection Agency) (1999) Background report on fertilizer use, contaminants and regulations. EPA-747-R-98-003. Washington, USA

  • Friedman M, Rasooly R (2013) Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins 5:743–775

    Article  CAS  Google Scholar 

  • González CR, González-Chávez MC (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  Google Scholar 

  • Goytia-Jiménez MA, Gallegos-Goytia CH, Núñez-Colín CA (2011) Relationship among climatic variables with the morphology and oil content of castor oil plant (Ricinus communis L.) seeds from Chiapas. Rev Chapingo serie Ciencias Forestales Amb 17:41–48

    Article  Google Scholar 

  • Jumat S, Dina AMN, Nazrizawat AT, Mohd Firdaus MY, Noraishah A (2010) Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malays 39:761–764

    Google Scholar 

  • Kitani O (1999) CIGR Handbook of Agricultural Engineering. American Society of Agricultural Engineers, St. Joseph

    Google Scholar 

  • Knothe G (2008) Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:358–1364

    Article  Google Scholar 

  • Koria L, Nithya G (2012) Analysis of Datura stramonium Linn. biodiesel by gas chromatography-mass spectrometry (GC-MS) and influence of tarry acid composition on the fuel related characteristics. J Phytol 4:6–9

    CAS  Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Le Guédard M, Faure O, Bessoule JJ (2012) Soundness of in situ lipid biomarker analysis: early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ Exp Bot 76:54–59

    Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2013) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Tech. doi:10.1007/s13762-013-0299-8

    Google Scholar 

  • Martínez Pérez D, Partida Sedas JG, Pérez Portilla E (2009) Especies vegetales para biocombustibles en sistemas agrícolas diversificados en Veracruz, México. Rev Bras Agroecol 4:4338–4342

    Google Scholar 

  • Mattina MJI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  Google Scholar 

  • Nolan AL, Mclaughlin MJ, Mason SD (2003) Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ Sci Technol 37:90–98

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  Google Scholar 

  • Okullo A, Temu A, Ogwok P, Ntalikwa W (2012) Physico-chemical properties of biodiesel from Jatropha and castor oils. Int J Renew Energ Res 1:47–52

    Google Scholar 

  • Ouariti O, Boussama N, Zarrou M, Cherif A, Ghorbal MH (1997) Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants and biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:284–321

    Article  Google Scholar 

  • Rajkumar M, Freitas SH (2008) Influence of metal resistant-plant growth promoting bacteria on the growth of Ricinus communis soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Rasmussen PE, Parton WJ (1994) Long-term effects of residue management in wheat-fallow: I. Inputs, yield, and soil organic matter. Soil Sci Soc Amer J 58:523–536

    Article  Google Scholar 

  • Ruiz-Olivares A, Carrillo-González R, González-Chávez MCA, Soto-Hernández RM (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 15:316–323

    Article  Google Scholar 

  • Sainju UM, Schomberg HH, Singh BP, Whitehead WF, Tillman PG, Lachnicht-Weyers SL (2007) Cover crop effect on soil carbon fractions under conservation tillage cotton. Soil Tillage Res 96:205–218

    Article  Google Scholar 

  • Saribiyik OY, Özcanli M, Serin H, Serin S, Aydin K (2010) Biodiesel production from Ricinus communis oil and its blends with soybean biodiesel. J Mechan Engineer 56:811–816

    Google Scholar 

  • Scholz V, Nogueira da Silva J (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32:95–100

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 7:271–280

    Article  Google Scholar 

  • Suarez P, Meneghetti SMP, Meneghetti MRM, Wolf CR (2007) Transformation of triglycerides into fuels, polymers and chemicals: some applications of catalysis in oleochemistry. Quim Nova 30:667–676

    Article  CAS  Google Scholar 

  • Temminghoff EJM, Van der Zee SEATM, Da Haan FAM (1998) Effects of dissolved organic matter on the mobility of copper in a contaminated sandy soil. Eur J Soil Sci 49:617–628

    Article  CAS  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land use change and forestry. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Wels B, Sperling M (2007) Atomic absorption spectrometry. Wiley-VCH, New York

    Google Scholar 

  • Wiebe K (2008) Biofuels: Implications for natural resources and food security in developing countries. Sustainable Biofuels and Human Security Conference, University of Illinois, Urbana-Champaign

  • Zamani AA, Shokri R, Yaftian MR, Parizanganeh AH (2013) Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent. Int J Environ Sci Technol 10:93–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research form part of FORDECYT 191357 Project. ARO carried out this work at Colegio de Postgraduados. We sincerely thank Prof. AJM Baker (Universities of Melbourne and Queensland, Australia and University of Sheffield, UK) for improving this manuscript. We acknowledge the help from Dr. Irma Díaz Aguilar to follow PCA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. A. González-Chávez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Supplementary material 2 (DOC 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Chávez, M.C.A., Ruíz Olivares, A., Carrillo-González, R. et al. Crude oil and bioproducts of castor bean (Ricinus communis L.) plants established naturally on metal mine tailings. Int. J. Environ. Sci. Technol. 12, 2263–2272 (2015). https://doi.org/10.1007/s13762-014-0622-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0622-z

Keywords

Navigation