Skip to main content
Log in

Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of spherical particles migrating towards the region of lumen with potential of thrombus existence (PTE) rises by increasing the particle size. Also, an optimum scope of particle size in which the adhesive probability parameter reaches its maximum was determined. We acquired an optimum scope for a specific degree of particle sphericity in which the thrombus surfaces experience the maximum density of interaction with particles. We learned that the ligand–receptor mechanism-based drug carriers are better choices for treating LAD arterial diseases when the addressees are patients with low haematocrit-related diseases. While due to the amount of shear stress exerting on the diseased area, generally exploiting nanoshear-activated drug carriers would be the more effective option when it comes to the thrombolytic therapies of patients with high haematocrit-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abba AA, Wani BA, Rahmatullah RA, Khalil MZ, Kumo AM, Ghonaim MA (2003) Door to needle time in administering thrombolytic therapy for acute myocardial infarction. Saudi Med J 24(4):361–4

    Google Scholar 

  • Abeddoust M, Shamloo A (2015) A model for cell density effect on stress fiber alignment and collective directional migration. Phys Biol 12(6):066023

  • Ali MR, Salim Hossain M, Islam MA, Saiful Islam Arman M, Sarwar Raju G, Dasgupta P, Noshin TF (2014) Aspect of thrombolytic therapy: a review. Sci World J 2014:586510

    Google Scholar 

  • Bächer C, Schrack L, Gekle S (2017) Clustering of microscopic particles in constricted blood flow. Phys Rev Fluids 2(1):013102

    Article  Google Scholar 

  • Bagge U, Karlsson R (1980) Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc Res 20(1):92–95

    Article  Google Scholar 

  • Boutsianis E, Dave H, Frauenfelder T, Poulikakos D, Wildermuth S, Turina M, Ventikos Y, Zund G (2004) Computational simulation of intracoronary flow based on real coronary geometry. Eur J Cardiothorac Surg 26(2):248–56

    Article  Google Scholar 

  • Carboni E, Tschudi K, Nam J, Lu X, Ma AW (2014) Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech 15(3):762–71

    Article  Google Scholar 

  • Colwell JA, Lopes-Virella M, Halushka PV (1981) Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 4(1):121–33

    Article  Google Scholar 

  • Dasgupta S, Auth T, Gompper G (2013) Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter 9:5473–5482

    Article  Google Scholar 

  • Debakey ME, Lawrie GM, Glaeser DH (1985) Patterns of atherosclerosis and their surgical significance. Ann Surg 201(2):115–131

    Article  Google Scholar 

  • Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30):5307–14

    Article  Google Scholar 

  • Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–43

    Article  Google Scholar 

  • Eckstein EC, Tilles AW, Millero FJ 3rd (1988) Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc Res 36(1):31–9

    Article  Google Scholar 

  • El-Sherbiny IM, Elkholi IE, Yacoub MH (2014) Tissue plasminogen activator-based clot busting: controlled delivery approaches. Glob Cardiol Sci Pract 2014(3):336–49

    Google Scholar 

  • Fedosov DA (2010) Multiscale modeling of blood flow and soft matter. Brown University, Providence

    Google Scholar 

  • Fournier RL (2011) Basic transport phenomena in biomedical engineering, 3rd edn. Taylor & Francis, Philadelphia

  • Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41(10):2312–8

    Article  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375

    Article  Google Scholar 

  • Godin B, Driessen WHP, Proneth B, Lee S-Y, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P (2010) An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69:31–64

    Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane wall–II Couette flow. Chem Eng Sci 22(4):653–660

    Article  Google Scholar 

  • Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27(2):204–222

    Article  Google Scholar 

  • Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H (2003) Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia. Am J Cardiol 91(1):27–32

    Article  Google Scholar 

  • Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293(1):455–463

    Article  Google Scholar 

  • Haverkort JW, Kenjereš S, Kleijn CR (2009) Computational simulations of magnetic particle capture in arterial flows. Ann Biomed Eng 37(12):2436–2448

    Article  Google Scholar 

  • Johnston BM, Johnston PR, Corney S, Kilpatrick D (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 37(5):709–20

    Article  Google Scholar 

  • Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng H 227(2):148–61

    Article  Google Scholar 

  • Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S (2014) Study of plaque vulnerability in coronary artery using Mooney–Rivlin model: a combination of finite element and experimental method. Biomed Eng Appl Basis Commun 26(01):1450013

    Article  Google Scholar 

  • Kenjereš S, Righolt BW (2012) Simulations of magnetic capturing of drug carriers in the brain vascular system. Int J Heat Fluid Flow 35:68–75

    Article  Google Scholar 

  • Kim M (2004) Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. J Colloid Interface Sci 269(2):425–431

    Article  Google Scholar 

  • Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–209

    Article  Google Scholar 

  • Kimmel SE, Berlin JA, Hennessy S, Strom BL, Krone RJ, Laskey WK (1997) Risk of major complications from coronary angioplasty performed immediately after diagnostic coronary angiography: results from the Registry of the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 30(1):193–200

    Article  Google Scholar 

  • Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, New York

  • Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–42

    Article  Google Scholar 

  • Kwon O, Krishnamoorthy M, Cho YI, Sankovic JM, Banerjee RK (2008) Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty. J Biomech Eng 130(1):011003

    Article  Google Scholar 

  • Lee J, Smith NP (2012) The multi-scale modelling of coronary blood flow. Ann Biomed Eng 40(11):2399–413

    Article  Google Scholar 

  • Lee SY, Ferrari M, Decuzzi P (2009) Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 42(12):1885–90

    Article  Google Scholar 

  • Letcher RL, Chien S, Pickering TG, Laragh JH (1983) Elevated blood viscosity in patients with borderline essential hypertension. Hypertension 5(5):757–62

    Article  Google Scholar 

  • Li A, Ahmadi G (1992) Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol 16(4):209–226

    Article  Google Scholar 

  • Lowe GD (1986) Blood rheology in arterial disease. Clin Sci (Lond) 71(2):137–46

    Article  Google Scholar 

  • Mody NA, King MR (2007) Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir 23(11):6321–8

    Article  Google Scholar 

  • Muller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 4:4871

    Article  Google Scholar 

  • Muller K, Fedosov DA, Gompper G (2016) Understanding particle margination in blood flow—a step toward optimized drug delivery systems. Med Eng Phys 38(1):2–10

    Article  Google Scholar 

  • Multiphysics C (2015) Particle tracing module user’s guide, COMSOL

  • Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferro-magnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323(6):651–668

    Article  Google Scholar 

  • Namdee K, Thompson AJ, Charoenphol P, Eniola-Adefeso O (2013) Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 29(8):2530–5

    Article  Google Scholar 

  • Namdee K, Thompson AJ, Golinski A, Mocherla S, Bouis D, Eniola-Adefeso O (2014) In vivo evaluation of vascular-targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis. Atherosclerosis 237(1):279–86

    Article  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263(6 Pt 2):H1770–8

    Google Scholar 

  • Sarnak MJ, Tighiouart H, Manjunath G, MacLeod B, Griffith J, Salem D, Levey AS (2002) Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 40(1):27–33

    Article  Google Scholar 

  • Schuhlen H, Kastrati A, Dirschinger J, Hausleiter J, Elezi S, Wehinger A, Pache J, Hadamitzky M, Schomig A (1998) Intracoronary stenting and risk for major adverse cardiac events during the first month. Circulation 98(2):104–11

  • Serda RE (2012) Mass transport of nanocarriers. Pan Stanford, Boca Raton

    Google Scholar 

  • Shah S (2009) Numerical simulation of particle adhesion dynamics for applications in nanomedicine and biosensing, University of Texas at Arlington

  • Shamloo A (2014) Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis. Cytoskeleton 71(9):501–512

  • Shamloo A, Nejad MA, Saeedi M (2017). Fluid-structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening. J Mech Behav Biomed Mater 74:72–83

  • Slack JD, Kanke M, Simmons GH, DeLuca PP (1981) Acute hemodynamic effects and blood pool kinetics of polystyrene microspheres following intravenous administration. J Pharm Sci 70(6):660–4

    Article  Google Scholar 

  • Sohrabi S, Zheng J, Finol EA, Liu Y (2014) Numerical simulation of particle transport and deposition in the pulmonary vasculature. J Biomech Eng 136(12):121010

    Article  Google Scholar 

  • Sohrabi S, Wang S, Tan J, Xu J, Yang J, Liu Y (2017) Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature. J Biomech 50:240–247

    Article  Google Scholar 

  • Stadler AA, Zilow EP, Linderkamp O (1990) Blood viscosity and optimal hematocrit in narrow tubes. Biorheology 27(5):779–88

    Article  Google Scholar 

  • Tan J, Thomas A, Liu Y (2011) Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8:1934–1946

    Article  Google Scholar 

  • Tan J, Wang S, Yang J, Liu Y (2013) Coupled particulate and continuum model for nanoparticle targeted delivery. Comput Struct 122:128–134

    Article  Google Scholar 

  • Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS (1985) Distribution of blood platelets flowing in arterioles. Am J Physiol 248(3):318–323

  • Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34(23):5863–71

    Article  Google Scholar 

  • Tilles AW, Eckstein EC (1987) The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res 33(2):211–23

    Article  Google Scholar 

  • Tomey MI, Kini AS, Sharma SK (2014) Current status of rotational atherectomy. JACC Cardiovasc Interv 7(4):345–53

    Article  Google Scholar 

  • Traberg MS, Jensen JA (2014) Ultrasound evaluation of an abdominal aortic fluid-structure interaction model, pp 2292–2295

  • Umbarkar TS, Kleinstreuer C (2015) Computationally efficient fluid-particle dynamics simulations of arterial systems. Commun Comput Phys 17(02):401–423

    Article  MathSciNet  MATH  Google Scholar 

  • van der Giessen AG, Groen HC, Doriot PA, de Feyter PJ, van der Steen AF, van de Vosse FN, Wentzel JJ, Gijsen FJ (2011) The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J Biomech 44(6):1089–95

    Article  Google Scholar 

  • Verheugt FW, Gersh BJ, Armstrong PW (2006) Aborted myocardial infarction: a new target for reperfusion therapy. Eur Heart J 27(8):901–4

    Article  Google Scholar 

  • Wen J, Ding G, Jiang W, Wang Q, Zheng T (2014) Numerical simulation of compliant artery bypass grafts using fluid-structure interaction framework. ASAIO J 60(5):533–40

    Article  Google Scholar 

  • Woldhuis B, Tangelder GJ, Slaaf DW, Reneman RS (1992) Concentration profile of blood platelets differs in arterioles and venules. Am J Physiol 262(4 Pt 2):H1217–23

    Google Scholar 

  • Xie X, Wang Y, Zhu H, Zhou H, Zhou J (2013) Impact of coronary tortuosity on coronary blood supply: a patient-specific study. PLoS One 8(5):e64564

    Article  Google Scholar 

  • Zhu SJ, Poon EK, Ooi AS, Moore S (2015) Enhanced targeted drug delivery through controlled release in a three-dimensional vascular tree. J Biomech Eng 137(3):031002

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Doctor Amir Sajadieh the interventional cardiologist and attending physician of CT-Angio Department of Alzahra Hospital of Isfahan who provided insight and expertise that greatly assisted the research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shamloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzandehmehr, M., Shamloo, A. Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design. Biomech Model Mechanobiol 17, 205–221 (2018). https://doi.org/10.1007/s10237-017-0955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0955-x

Keywords

Navigation