Skip to main content

Cardiac Progenitor Cells

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 11

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1312))

Abstract

Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilleos A, Trainor PA (2012) Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 22(2):288–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Sanchez C, Michael M, Pennings S (2018) Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018:1247857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrade D, Oliveira G, Menezes L, Nascimento AL, Carvalho S, Stumbo AC et al (2020) Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis 30(1):151–161

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415(6868):240–243

    Article  CAS  PubMed  Google Scholar 

  • Aybar MJ, Mayor R (2002) Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr Opin Genet Dev 12(4):452–458

    Article  CAS  PubMed  Google Scholar 

  • Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G (2013) Human cardiospheres as a source of multipotent stem and progenitor cells. Stem Cells Int 2013:916837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belostotskaya GB, Nerubatskaya IV, Galagudza MM (2018) Two mechanisms of cardiac stem cell-mediated cardiomyogenesis in the adult mammalian heart include formation of colonies and cell-in-cell structures. Oncotarget 9(75):34159–34175

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al (2003a) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al (2003b) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B et al (2010a) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120(4):1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B et al (2010b) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120(4):1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ et al (2017) Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 97(1):89–134

    Article  CAS  PubMed  Google Scholar 

  • Bondue A, Blanpain C (2010) Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res 107(12):1414–1427

    Article  CAS  PubMed  Google Scholar 

  • Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M et al (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL (2013) Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med 3(10):a013847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835

    Article  CAS  PubMed  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 21(6):977–986

    Article  CAS  PubMed  Google Scholar 

  • Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E et al (2018) Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Invest 128(3):1043–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheitlin M. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. In: Menasché P, Alfieri O, Janssens S, et al (Université Paris Descartes, France; Ospedale San Raffaele, Milano, Italy; UZ Gasthuisberg, Leuven, Belgium; et al) Circulation 117: 1189-1200, 2008. Year book of cardiology. 2009;2009:413–415.

    Google Scholar 

  • Chen L, Ashraf M, Wang Y, Zhou M, Zhang J, Qin G et al (2012) The role of notch 1 activation in cardiosphere derived cell differentiation. Stem Cells Dev 21(12):2122–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xu J, Ye Y, Li Y, Gong H, Zhang G et al (2014) Urotensin II inhibited the proliferation of cardiac side population cells in mice during pressure overload by JNK-LRP6 signalling. J Cell Mol Med 18(5):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9(6):527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JJ, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE (2013) Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 22(13):1932–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT et al (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563

    Google Scholar 

  • Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD et al (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci 103(21):8155–8160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis DR, Zhang Y, Smith RR, Cheng K, Terrovitis J, Malliaras K et al (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4(9):e7195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Devalla HD, Passier R (2018) Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 10(435):eaah5457

    Article  PubMed  Google Scholar 

  • Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL (2004) Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131(16):3931–3942

    Article  CAS  PubMed  Google Scholar 

  • Doyle MJ, Lohr JL, Chapman CS, Koyano-Nakagawa N, Garry MG, Garry DJ (2015) Human induced pluripotent stem cell-derived cardiomyocytes as a model for heart development and congenital heart disease. Stem Cell Rev Rep 11(5):710–727

    Article  CAS  PubMed  Google Scholar 

  • Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5(6):919–932

    Article  PubMed  Google Scholar 

  • Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336(2):137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi E, Valipour B, Vietor I, Farahzadi R (2020) An overview of the myocardial regeneration potential of cardiac c-Kit(+) progenitor cells via PI3K and MAPK signaling pathways. Futur Cardiol 16(3):199–209

    Article  CAS  Google Scholar 

  • Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK et al (2011) Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR et al (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774):751–753

    Article  CAS  PubMed  Google Scholar 

  • Galvez BG, Sampaolesi M, Barbuti A, Crespi A, Covarello D, Brunelli S et al (2008) Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death Differ 15(9):1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG et al (2015) Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 13:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Martinez V, Schoenwolf GC (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159(2):706–719

    Article  CAS  PubMed  Google Scholar 

  • Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127(6):1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Gavira JJ, Nasarre E, Abizanda G, Pérez-Ilzarbe M, de Martino-Rodriguez A, García de Jalón JA et al (2010) Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur Heart J 31(8):1013–1021

    Google Scholar 

  • Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylven C et al (2010) Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev 19(10):1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82(10):1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8(2):136–147

    Article  CAS  PubMed  Google Scholar 

  • Goumans M-J, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH et al (2008) TGF-β1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1(2):138–149

    Article  CAS  Google Scholar 

  • Gurjarpadhye A, Hewett KW, Justus C, Wen X, Stadt H, Kirby ML et al (2007) Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 292(3):H1291–H1300

    Article  CAS  PubMed  Google Scholar 

  • Gwizdala A, Rozwadowska N, Kolanowski TJ, Malcher A, Cieplucha A, Perek B et al (2017) Safety, feasibility and effectiveness of first in-human administration of muscle-derived stem/progenitor cells modified with connexin-43 gene for treatment of advanced chronic heart failure. Eur J Heart Fail 19(1):148–157

    Article  CAS  PubMed  Google Scholar 

  • Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii Y, Langberg J, Rosborough K, Mikawa T (2009) Endothelial cell lineages of the heart. Cell Tissue Res 335(1):67–73

    Article  PubMed  Google Scholar 

  • Jebeniani I, Ding S, Puceat M (1994) Improved Protocol for Cardiac Differentiation and Maturation of Pluripotent Stem Cells. Methods Mol Biol 2019:71–77

    Google Scholar 

  • Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Kannappan R, Matsuda A, Ferreira-Martins J, Zhang E, Palano G, Czarna A et al (2017) p53 modulates the fate of cardiac progenitor cells ex vivo and in the diabetic heart in vivo. EBioMedicine 16:224–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126(11_Suppl_1):S29–S37

    Article  CAS  PubMed  Google Scholar 

  • Keyte A, Hutson MR (2012) The neural crest in cardiac congenital anomalies. Differentiation 84(1):25–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220(4601):1059–1061

    Article  CAS  PubMed  Google Scholar 

  • Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F et al (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295(2):507–522

    Article  CAS  PubMed  Google Scholar 

  • Kuhn EN, Wu SM (2010) Origin of cardiac progenitor cells in the developing and postnatal heart. J Cell Physiol 225(2):321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Lavine KJ, Ornitz DM (2008) Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 24(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Le T, Chong J (2016a) Cardiac progenitor cells for heart repair. Cell Death Dis 2:16052

    Article  Google Scholar 

  • Le T, Chong J (2016b) Cardiac progenitor cells for heart repair. Cell Death Dis 2:16052

    Article  Google Scholar 

  • Liao R, Pfister O, Jain M, Mouquet F (2007) The bone marrow--cardiac axis of myocardial regeneration. Prog Cardiovasc Dis 50(1):18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M et al (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3(1):55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18(4):510–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan M, Atoui R (2018) Therapeutic use of stem cells for myocardial infarction. Bioengineering (Basel) 5(2)

    Google Scholar 

  • Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S et al (2016) Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J 37(23):1789–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K, Chakravarty T et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Männer J, Perez-Pomares J, Macias D, Munoz-Chapuli R (2001) The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169(2):89–103

    Article  PubMed  Google Scholar 

  • Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R (2001) The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169(2):89–103

    Article  CAS  PubMed  Google Scholar 

  • Mansour S, Roy D-C, Bouchard V, Stevens LM, Gobeil F, Rivard A et al (2011) One-year safety analysis of the COMPARE-AMI trial: comparison of intracoronary injection of CD133. Bone Marrow Res 2011

    Google Scholar 

  • Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CK et al (2019) Cardiac progenitor cell–derived extracellular vesicles reduce infarct size and associate with increased cardiovascular cell proliferation. J Cardiovasc Transl Res 12(1):5–17

    Article  PubMed  Google Scholar 

  • Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15(3):316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF et al (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Mauretti A, Spaans S, Bax NA, Sahlgren C, Bouten CV (2017) Cardiac progenitor cells and the interplay with their microenvironment. Stem Cells Int 2017

    Google Scholar 

  • Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N et al (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 32(21):2634–2641

    Article  CAS  PubMed  Google Scholar 

  • Mazhari R, Hare JM (2007) Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med 4(1):S21–SS6

    Article  PubMed  Google Scholar 

  • Menasché P, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280

    Article  PubMed  Google Scholar 

  • Menasche P, Hagege A, Scorsin M, Pouzet B, Desnos M, Duboc D et al (2001) Autologous skeletal myoblast transplantation for cardiac insufficiency. First clinical case. Arch Mal Coeur Vaiss 94(3):180–182

    CAS  PubMed  Google Scholar 

  • Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25(4):299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  PubMed  Google Scholar 

  • Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine-and xeno-free conditions. Cell Rep 2(5):1448–1460

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Vijayan K, Colletti EJ, Harrington DA, Matthiesen TS, Simpson D et al (2011) Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123(4):364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48(6):2607–2655

    Article  PubMed  CAS  Google Scholar 

  • Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A et al (2006) Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci 103(52):19812–19817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850

    Article  CAS  PubMed  Google Scholar 

  • Noseda M, Peterkin T, Simoes FC, Patient R, Schneider MD (2011) Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 108(1):129–152

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Bonaros N, Marksteiner R, Wolf D, Margreiter E, Schachner T et al (2004) Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. Eur J Cardio-thoracic Surg 25(4):627–634

    Article  CAS  Google Scholar 

  • Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahnke A, Conant G, Huyer LD, Zhao Y, Feric N, Radisic M (2016) The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochem Biophys Res Commun 473(3):698–703

    Article  CAS  PubMed  Google Scholar 

  • Park S-J, Kim RY, Park B-W, Lee S, Choi SW, Park J-H et al (2019) Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun 10(1):3123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Pomares JM, de la Pompa JL (2011) Signaling during epicardium and coronary vessel development. Circ Res 109(12):1429–1442

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46(8):1005–1013

    CAS  PubMed  Google Scholar 

  • Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Phillips MT, Kirby ML, Forbes G (1987) Analysis of cranial neural crest distribution in the developing heart using quail-chick chimeras. Circ Res 60(1):27–30

    Article  CAS  PubMed  Google Scholar 

  • Ptaszek LM, Mansour M, Ruskin JN, Chien KR (2012) Towards regenerative therapy for cardiac disease. Lancet 379(9819):933–942

    Article  PubMed  Google Scholar 

  • Qayyum AA, Mathiasen AB, Helqvist S, Jorgensen E, Haack-Sorensen M, Ekblond A et al (2019) Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results. J Transl Med 17(1):360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A et al (2014) Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 173(3):453–466

    Article  PubMed  Google Scholar 

  • Reifers F, Walsh EC, Leger S, Stainier DY, Brand M (2000) Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942

    Article  CAS  PubMed  Google Scholar 

  • Romagnuolo R, Masoudpour H, Porta-Sanchez A, Qiang B, Barry J, Laskary A et al (2019) Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep 12(5):967–981

    Article  Google Scholar 

  • Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A 104(45):17783–17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roura S, Galvez-Monton C, Mirabel C, Vives J, Bayes-Genis A (2017) Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Res Ther 8(1):238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10(8):345–352

    Article  CAS  PubMed  Google Scholar 

  • Sahara M, Santoro F, Sohlmer J, Zhou C, Witman N, Leung CY et al (2019) Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 48(4):475–490. e7

    Article  CAS  PubMed  Google Scholar 

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Scholl AM, Kuhn EN, Stadt HA, Decker JR, Pegram K et al (2011) FGF8 signaling is chemotactic for cardiac neural crest cells. Dev Biol 354(1):18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9(7):557–568

    Article  CAS  PubMed  Google Scholar 

  • Sawa Y, Yoshikawa Y, Toda K, Fukushima S, Yamazaki K, Ono M et al (2015) Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J 79(5):991–999

    Article  PubMed  Google Scholar 

  • Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11(4):451–462

    Article  CAS  PubMed  Google Scholar 

  • Sebastião MJ, Serra M, Pereira R, Palacios I, Gomes-Alves P, Alves PM (2019) Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Res Ther 10(1):77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Zhang Y, Buikema JW, Serpooshan V, Chirikian O, Kosaric N et al (2018) Stage-specific effects of bioactive lipids on human iPSC cardiac differentiation and cardiomyocyte proliferation. Sci Rep 8(1):6618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shenje LT, Field LJ, Pritchard CA, Guerin CJ, Rubart M, Soonpaa MH et al (2008) Lineage tracing of cardiac explant derived cells. PLoS One 3(4):e1929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR et al (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124):177–182

    Article  CAS  PubMed  Google Scholar 

  • Smits AM, van Laake LW, den Ouden K, Schreurs C, Szuhai K, van Echteld CJ et al (2009a) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Smits AM, Van Vliet P, Metz CH, Korfage T, Sluijter JP, Doevendans PA et al (2009b) Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4(2):232

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Takamiya M, Haider KH, Ashraf M (2011) Identification and characterization of a novel multipotent sub-population of Sca-1(+) cardiac progenitor cells for myocardial regeneration. PLoS One 6(9):e25265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46(7):1339–1350

    Article  CAS  PubMed  Google Scholar 

  • Tani-Matsuhana S, Vieceli FM, Gandhi S, Inoue K, Bronner ME (2018) Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB. Dev Biol 444(Suppl 1):S209–SS18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarui S, Ishigami S, Ousaka D, Kasahara S, Ohtsuki S, Sano S et al (2015) Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thoracic Cardiovasc Surg 150(5):1198–1208. e2

    Article  Google Scholar 

  • Tendera M, Wojakowski W, RużyÅ‚Å‚o W, Chojnowska L, KÄ™pka C, Tracz W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur Heart J 30(11):1313–1321

    Article  PubMed  Google Scholar 

  • Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214

    Article  PubMed  Google Scholar 

  • Tomita Y, Matsumura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, Kawaguchi H et al (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170(7):1135–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F et al (2018) Preclinical studies of stem cell therapy for heart disease. Circ Res 122(7):1006–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torán JL, Aguilar S, López JA, Torroja C, Quintana JA, Santiago C et al (2017) CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci Rep 7(1):12490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyofuku T, Yoshida J, Sugimoto T, Yamamoto M, Makino N, Takamatsu H et al (2008) Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev Biol 321(1):251–262

    Article  CAS  PubMed  Google Scholar 

  • Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM (2015) Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 142(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y et al (2013) Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Rep 1(5):397–410

    Article  CAS  Google Scholar 

  • Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L et al (2007) Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci 104(23):9685–9690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35(2)

    Google Scholar 

  • Unno K, Jain M, Liao R (2012) Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circ Res 110(10):1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valiente-Alandi I, Albo-Castellanos C, Herrero D, Sanchez I, Bernad A (2016) Bmi1+ cardiac progenitor cells contribute to myocardial repair following acute injury. Stem Cell Res Ther 7(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ et al (2014) C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walravens AS, Vanhaverbeke M, Ottaviani L, Gillijns H, Trenson S, Driessche NV et al (2018) Molecular signature of progenitor cells isolated from young and adult human hearts. Sci Rep 8(1):9266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH et al (2006) The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24(7):1779–1788

    Article  PubMed  Google Scholar 

  • Wang WE, Chen X, Houser SR, Zeng C (2013) Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clin Sci 125(7):319–327

    Article  CAS  Google Scholar 

  • Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4(9):a007864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams B (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 87(8):10–17

    Article  CAS  Google Scholar 

  • Winter EM, Grauss RW, Hogers B, van Tuyn J, van der Geest R, Lie-Venema H et al (2007) Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116(8):917–927

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127(6):1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Chien KR, Mummery C (2008) Origins and fates of cardiovascular progenitor cells. Cell 132(4):537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J et al (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110(34):13839–13844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Lv A, Wang L, Yan X (2012) The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 360(1-2):279–287

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Francis R, Wei CJ, Linask KL, Lo CW (2006) Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133(18):3629–3639

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn YH, Feng J, Tessarollo L, Ito K, Sieber-Blum M (2003) Neural crest stem cell and cardiac endothelium defects in the TrkC null mouse. Mol Cell Neurosci 24(1):160–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tian X, Peng C, Yan C, Li Y, Sun M et al (2018) Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem Biophys Res Commun 503(2):482–489

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Liu XC, Kong F, Qi TG, Cheng GH, Wang J et al (2014) Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction. Mol Med Rep 10(3):1448–1454

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT (2008a) Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun 375(3):450–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J et al (2008b) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shouman, S. et al. (2020). Cardiac Progenitor Cells. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 11. Advances in Experimental Medicine and Biology(), vol 1312. Springer, Cham. https://doi.org/10.1007/5584_2020_594

Download citation

Publish with us

Policies and ethics