Skip to main content

A Museum of Stem Cells Points to Muse Cells as Robust Transplantable Cells for Stroke: Review

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 11

Abstract

Stem cell-based therapy stands as a robust experimental treatment for ischemic stroke. Stem cells derived from fetal, embryonic, and adult tissues serve as potential sources for transplantable cells in the setting of ischemic stroke. However, the search continues for finding an optimal cell line for clinical use. Muse cells, a distinct subset of mesenchymal stem cells found sporadically in the connective tissue of nearly every organ, may be a suitable candidate due to its safety and accessibility. These cells have been investigated for therapeutic usage in chronic kidney disease, liver disease, acute myocardial infarction, and stroke. Muse cells display the ability to engraft and differentiate into the host neural network unlike many other cell lines which only display bystander immunomodulating effects. Taking advantage of this unique engraftment and differentiation mechanism behind Muse cells’ therapeutic effects on the central nervous system, as well as other organ systems, will undoubtedly advance the cells’ utility for cell-based regenerative medicine in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Aburakawa D, Niizuma K et al (2020) Intravenously transplanted human multilineage-differentiating stress-enduring cells afford brain repair in a mouse lacunar stroke model. Stroke 51(2):601–611

    Article  CAS  PubMed  Google Scholar 

  • Alessio N, Squillaro T, Ă–zcan S et al (2018) Stress and stem cells: adult muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget 9(27):19328–19341

    Article  PubMed  PubMed Central  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2)

    Google Scholar 

  • Benjamin EJ et al (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  • Bernard L, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30(3):10

    Google Scholar 

  • Chen ZZ et al (2008) Beneficial effect of autologous transplantation of bone marrow stromal cells and endothelial progenitor cells on cerebral ischemia in rabbits. Neurosci Lett 445(1)

    Google Scholar 

  • Chen S et al (2016) Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 9(1):41–47

    PubMed  PubMed Central  Google Scholar 

  • Dabrowska S et al (2019) Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 16(1):178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dezawa M (2018) Clinical trials of muse cells. Muse Cells 1103:3

    Google Scholar 

  • Dezawa M, Niizuma K, Tominaga T (2019) Actualization of neural regenerative medicine by intravenous drip of donor-derived muse cells. Brain Nerve 71(8):895–900

    CAS  PubMed  Google Scholar 

  • Doeppner TR et al (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eterno V et al (2014) Adipose-derived mesenchymal stem cells (ASCs) may favour breast cancer recurrence via HGF/c-met signaling. Oncotarget 5(3):613–633

    Article  PubMed  Google Scholar 

  • Felfly H et al (2010) Hematopoietic stem cell transplantation protects mice from lethal stroke. Exp Neurol 225(2)

    Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  • Gorin NC (2019) Bone marrow harvesting for HSCT. In: The EBMT handbook. Springer

    Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1992a) Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol 116(2):105–121

    Article  CAS  PubMed  Google Scholar 

  • Grabowski M et al (1992b) Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience 51(3):673–682

    Article  CAS  PubMed  Google Scholar 

  • GutiĂ©rrez-Fernández M et al (2013) Adipose tissue-derived stem cells in stroke treatment: from bench to bedside. Discov Med 16(86):37–43

    PubMed  Google Scholar 

  • Hao L et al (2014) Stem cell-based therapies for ischemic stroke. Biomed Res Int 2014:468748

    PubMed  PubMed Central  Google Scholar 

  • Higgins JM (2015) Red blood cell population dynamics. Clin Lab Med 35(1):43–57

    Article  PubMed  Google Scholar 

  • Hsiao HH et al (2014) Acute cerebral infarct with elevated factor VIII level during the thrombocytopenic stage after hematopoietic stem cell transplant. Exp Clin Transplant 12(2):171–172

    PubMed  Google Scholar 

  • Hu MS, Longaker MT (2017) A MUSE for skin regeneration. J Invest Dermatol 137(12):2471–2472

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegame Y et al (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka S et al (2013) Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke 44(3):720–726

    Article  PubMed  Google Scholar 

  • JapicCTI-183834, J.I (2020) Exploratory study of CL2020 in patients with ST-elevation acute myocardial infarction

    Google Scholar 

  • JapicCTI-184103, J.I (2018) A randomized, double-blind, placebo-controlled clinical study of CL2020 in ischemic stroke patient

    Google Scholar 

  • JapicCTI-184563, J.I (2018) A clinical study of CL2020 in patients with epidermolysis bullosa

    Google Scholar 

  • JapicCTI-194841, J.I (2019) A clinical study of CL2020 in patients with spinal cord injury

    Google Scholar 

  • JapicCTI-195067, J.I (2019) A confirmatory study of CL2020 in patients with ST-elevation myocardial infarction

    Google Scholar 

  • Jin Soo Lee JMH, Moon GJ, Lee PH, Ahn YH, Bang OY, STARTING Collaborators (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28(6):8

    Google Scholar 

  • jRCT2043190112, J.I (2020) The clinical trial of CL2020 for neonatal hypoxic ischemic encephalopathy

    Google Scholar 

  • Kasahara Y et al (2016) Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res 176:69–80

    Article  PubMed  Google Scholar 

  • Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55(4):5

    Article  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103(1):8

    Article  Google Scholar 

  • Krause M et al (2019) Cell-based therapies for stroke: are we there yet? Front Neurol 10:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroda S et al (2018) Muse cell: a new paradigm for cell therapy and regenerative homeostasis in ischemic stroke. Adv Exp Med Biol 1103:187–198

    Article  CAS  PubMed  Google Scholar 

  • Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JE, Lee DR (2011) Human embryonic stem cells: derivation, maintenance and cryopreservation. Int J Stem Cells 4(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng Z, Sun D, Huang Z et al (2019) Quantitative analysis of SSEA3+ cells from human umbilical cord after magnetic sorting. Cell Transplant 28(7):907–923. 52

    Article  PubMed  PubMed Central  Google Scholar 

  • Leong WK et al (2012) Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 1(3):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Hua J (2017) Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 74(13):2345–2360

    Article  CAS  PubMed  Google Scholar 

  • Liang Y et al (2013) The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability. Chin J Cancer 32(4):205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Liu S-J et al (2014) Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 11

    Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

    Article  CAS  PubMed  Google Scholar 

  • Ma S et al (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225

    Article  CAS  PubMed  Google Scholar 

  • Mampalam TJ et al (1988) Neuronal changes in fetal cortex transplanted to ischemic adult rat cortex. J Neurosurg 69(6):904–912

    Article  CAS  PubMed  Google Scholar 

  • McElreavey KD et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29S

    Article  CAS  PubMed  Google Scholar 

  • Minatoguchi S et al (2018) Acute myocardial infarction, cardioprotection, and muse cells. Adv Exp Med Biol 1103:153–166

    Article  CAS  PubMed  Google Scholar 

  • Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H et al (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9(1)

    Google Scholar 

  • Mushahary D et al (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  CAS  PubMed  Google Scholar 

  • Nishina T, Hoshikawa KT, Ueno Y (2018) Current cell-based therapies in the chronic liver diseases. Adv Exp Med Biol 1103:243–253

    Article  CAS  PubMed  Google Scholar 

  • Ogura F et al (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23(7):717–728

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Temple S (2009) Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol 19(2):112–119

    Article  CAS  PubMed  Google Scholar 

  • Ovbiagele B et al (2013) Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association. Stroke 44(8):2361–2375

    Article  PubMed  Google Scholar 

  • Sacco RL et al (2013) An updated definition of stroke for the 21st century. Stroke 44(7):2064–2089

    Article  PubMed  Google Scholar 

  • Santilli G et al (2010) Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One 5(1):e8575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savitz SI et al (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovas Dis 20(2):7

    Google Scholar 

  • Shinozuka K et al (2013) Stem cell transplantation for neuroprotection in stroke. Brain Sci 3(1):239–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Shohei Wakao HA, Kushida Y, Dezawa M (2014) Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int 64(1):9

    Google Scholar 

  • Song CG et al (2018) Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res 13(7):1294–1304

    Article  PubMed  PubMed Central  Google Scholar 

  • Stonesifer C et al (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 158:94–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Nishigaki K, Minatoguchi S et al (2018) Mobilized Muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82(2):561–571

    Article  CAS  PubMed  Google Scholar 

  • Uchida H et al (2016) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34(1):160–173

    Article  CAS  PubMed  Google Scholar 

  • Uchida H et al (2017) Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48(2):428–435

    Article  PubMed  Google Scholar 

  • Uchida N, Kumagai N, Kondo Y (2018) Application of muse cell therapy for kidney diseases. Adv Exp Med Biol 1103:199–218

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35(2)

    Google Scholar 

  • Valeria Battistella GRdF, da Fonseca LMB, Mercante D, Gutfilen B, Goldenberg RCS, Dias JV, Kasai-Brunswick TH, Wajnberg E, Rosado-de-Castro PH, Alves-Leon SV, Mendez-Otero R, Andre C (2011) Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med 6(1):8

    Google Scholar 

  • Wakao S et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A 108(24):9875–9880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakao S et al (2014) Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int 64(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Wakao S, Kushida Y, Dezawa M (2018) Basic characteristics of Muse cells. Adv Exp Med Biol 1103:13–41

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y et al (2018) S1P-S1PR2 Axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res 122(8):1069–1083

    Article  CAS  PubMed  Google Scholar 

  • Young W (2018) Future of Muse cells. Muse Cells 1103:7

    Google Scholar 

  • Zents K, Copray S (2016) The therapeutic potential of induced pluripotent stem cells after stroke: evidence from rodent models. Curr Stem Cell Res Ther 11(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang RL et al (2014) Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse. PLoS One 9(12):e113972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Moore D (2018) Neural stem cells: developmental mechanisms and disease modeling. Cell Tissue Res 371(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, Y.J. et al. (2020). A Museum of Stem Cells Points to Muse Cells as Robust Transplantable Cells for Stroke: Review. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 11. Advances in Experimental Medicine and Biology(), vol 1312. Springer, Cham. https://doi.org/10.1007/5584_2020_596

Download citation

Publish with us

Policies and ethics