Skip to main content

Functions of Mesenchymal Stem Cells in Cardiac Repair

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 11

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1312))

Abstract

Myocardial infarction (MI) and heart failure (HF) are significant contributors of mortality worldwide. Mesenchymal stem cells (MSCs) hold a great potential for cardiac regenerative medicine-based therapies. Their therapeutic potential has been widely investigated in various in-vitro and in-vivo preclinical models. Besides, they have been tested in clinical trials of MI and HF with various outcomes. Differentiation to lineages of cardiac cells, neovascularization, anti-fibrotic, anti-inflammatory, anti-apoptotic and immune modulatory effects are the main drivers of MSC functions during cardiac repair. However, the main mechanisms regulating these functions and cross-talk between cells are not fully known yet. Increasing line of evidence also suggests that secretomes of MSCs and/or their extracellular vesicles play significant roles in a paracrine manner while mediating these functions. This chapter aims to summarize and highlight cardiac repair functions of MSCs during cardiac repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afra S, Matin MM (2020) Potential of mesenchymal stem cells for bioengineered blood vessels in comparison with other eligible cell sources. Cell Tissue Res 380(1):1–13

    Article  PubMed  Google Scholar 

  • Andaloussi SEL, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  CAS  Google Scholar 

  • Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26(7):1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264–ee77

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 92(4):387–397

    Article  CAS  Google Scholar 

  • Boulanger CM, Loyer X, Rautou PE, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 14(5):259–272

    Article  CAS  PubMed  Google Scholar 

  • Briquez PS, Clegg LE, Martino MM, Mac Gabhann F, Hubbell JA (2016) Design principles for therapeutic angiogenic materials. Nat Rev Mater 1(1):1–15

    Article  CAS  Google Scholar 

  • Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ et al (2017) Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-A randomized trial. Circ Res 120(2):332–340

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1986) Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb. Prog Clin Biol Res 217B:307–318

    CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  CAS  PubMed  Google Scholar 

  • Chien KR, Frisen J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL (2019) Regenerating the field of cardiovascular cell therapy. Nat Biotechnol 37(3):232–237

    Article  CAS  PubMed  Google Scholar 

  • Chong SY, Lee CK, Huang C, Ou YH, Charles CJ, Richards AM et al (2019) Extracellular vesicles in cardiovascular diseases: alternative biomarker sources, therapeutic agents, and drug delivery carriers. Int J Mol Sci 20(13)

    Google Scholar 

  • Chou SH, Lin SZ, Kuo WW, Pai P, Lin JY, Lai CH et al (2014) Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplant 23(4–5):513–529

    Article  PubMed  Google Scholar 

  • Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P et al (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1):II253–II258

    PubMed  Google Scholar 

  • Demirdogen B, Elcin AE, Elcin YM (2010) Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Growth Factors 28(6):426–436

    Article  CAS  PubMed  Google Scholar 

  • Dittrich A, Lauridsen H (2019) Myocardial infarction and the immune response-scarring or regeneration? A comparative look at mammals and popular regenerating animal models. J Immunol Regener Med 4:100016

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Elcin Y (2002) Angiogenesis in tissue engineering. Technol Health Care 10(3–4):306–308

    Google Scholar 

  • Elcin AE, Elcin YM (2006) Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng 12(4):959–968

    Article  CAS  PubMed  Google Scholar 

  • Elcin YM, Dixit V, Gitnick G (1996) Controlled release of endothelial cell growth factor from chitosan-albumin microspheres for localized angiogenesis: in vitro and in vivo studies. Artif Cells Blood Substit Immobil Biotechnol 24(3):257–271

    Article  CAS  PubMed  Google Scholar 

  • Elnakish MT, Hassan F, Dakhlallah D, Marsh CB, Alhaider IA, Khan M (2012) Mesenchymal stem cells for cardiac regeneration: translation to bedside reality. Stem Cells Int 2012:646038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elnakish MT, Kuppusamy P, Khan M (2013) Stem cell transplantation as a therapy for cardiac fibrosis. J Pathol 229(2):347–354

    Article  CAS  PubMed  Google Scholar 

  • Epstein SE, Luger D, Lipinski MJ (2017) Paracrine-mediated systemic anti-inflammatory activity of intravenously administered mesenchymal stem cells: a transformative strategy for cardiac stem cell therapeutics. Circ Res 121(9):1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE (2019) Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 14(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23(6):515–528

    Article  CAS  PubMed  Google Scholar 

  • Gallina C, Turinetto V, Giachino C (2015) A new paradigm in cardiac regeneration: the mesenchymal stem cell Secretome. Stem Cells Int 2015:765846

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao F, He T, Wang H, Yu S, Yi D, Liu W et al (2007) A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23(11):891–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao WX, Sun YQ, Shi J, Li CL, Fang SB, Wang D et al (2017) Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther 8(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC (2016) Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol 1416:123–146

    Article  CAS  PubMed  Google Scholar 

  • Gomes SA, Rangel EB, Premer C, Dulce RA, Cao Y, Florea V et al (2013) S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc Natl Acad Sci U S A 110(8):2834–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Lin GS, Bao CY, Hu ZM, Hu MY (2007) Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30(3–4):97–104

    Article  CAS  PubMed  Google Scholar 

  • Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN et al (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One 9(5):e96725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122(23):2419–2429

    Article  CAS  PubMed  Google Scholar 

  • Iekushi K, Seeger F, Assmus B, Zeiher AM, Dimmeler S (2012) Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction. Circulation 125(14):1765–1773. S1-7

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Zhang J, Deng Z, Liu J, Han W, Chen G et al (2020) Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther 11(1):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabat M, Bobkov I, Kumar S, Grumet M (2020) Trends in mesenchymal stem cell clinical trials 2004-2018: is efficacy optimal in a narrow dose range? Stem Cells Transl Med 9(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Koc A, Finkenzeller G, Elcin AE, Stark GB, Elcin YM (2014) Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: in vitro and in vivo studies. J Biomater Appl 29(5):748–760

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA (2019) Cardiomyogenesis modeling using pluripotent stem cells: the role of microenvironmental Signaling. Front Cell Dev Biol 7:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Xu X, Wang Z, Liu W, Li Z (2007) Investigation of canine mesenchymal stem cells differentiation to vascular endothelial cell in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24(6):1348–1351

    CAS  PubMed  Google Scholar 

  • Li L, Zhang Y, Li Y, Yu B, Xu Y, Zhao S et al (2008) Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int 21(12):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36(4):725–731

    Article  CAS  PubMed  Google Scholar 

  • Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123

    Article  PubMed  Google Scholar 

  • Lian Q, Zhang Y, Liang X, Gao F, Tse HF (2016) Directed differentiation of human-induced pluripotent stem cells to mesenchymal stem cells. Methods Mol Biol 1416:289–298

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang H, Li J (2016) Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol 10:79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Wang F, Mei H, Wang S, Cheng L (2018) Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial colony-forming cells than umbilical cord and endometrium. Stem Cells Int 2018:7537589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC et al (2017) Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res 120(10):1598–1613

    Article  CAS  PubMed  Google Scholar 

  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majka M, Sulkowski M, Badyra B, Musialek P (2017) Concise review: mesenchymal stem cells in cardiovascular regeneration: emerging research directions and clinical applications. Stem Cells Transl Med 6(10):1859–1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM et al (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295(6):H2308–H2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Mazo M, Arana M, Pelacho B, Prosper F (2012) Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int 2012:175979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mias C, Lairez O, Trouche E, Roncalli J, Calise D, Seguelas MH et al (2009) Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27(11):2734–2743

    Article  CAS  PubMed  Google Scholar 

  • Molina EJ, Palma J, Gupta D, Torres D, Gaughan JP, Houser S et al (2009) Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. J Tissue Eng Regen Med 3(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Muller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48(6):2607–2655

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112(8):1128–1135

    Article  PubMed  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N (2007a) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 581(21):3961–3966

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M et al (2007b) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 42(1):88–97

    Article  CAS  PubMed  Google Scholar 

  • Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R (2011) Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res 6(3):215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384

    Article  PubMed  Google Scholar 

  • Ozturk S, Elcin YM (2018) Cardiac stem cell characteristics in physiological and pathological conditions. Curr Pharm Des 24(26):3101–3112

    Article  CAS  PubMed  Google Scholar 

  • Öztürk S, Elçin AE, Koca A, Elçin YM (2020) Therapeutic applications of stem cells and extracellular vesicles in emergency care: futuristic perspectives. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-020-10029-2

  • Pei Z, Zeng J, Song Y, Gao Y, Wu R, Chen Y et al (2017) In vivo imaging to monitor differentiation and therapeutic effects of transplanted mesenchymal stem cells in myocardial infarction. Sci Rep 7(1):6296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pokrovskaya LA, Zubareva EV, Nadezhdin SV, Lysenko AS, Litovkina TL (2020) Biological activity of mesenchymal stem cells secretome as a basis for cell-free therapeutic approach. Res Results Pharmacol 6:57

    Article  CAS  Google Scholar 

  • Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D et al (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 106(33):14022–14027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397

    Article  PubMed  Google Scholar 

  • Rose RA, Jiang H, Wang X, Helke S, Tsoporis JN, Gong N et al (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26(11):2884–2892

    Article  CAS  PubMed  Google Scholar 

  • Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z et al (2009) Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 15(8):2039–2050

    Article  CAS  PubMed  Google Scholar 

  • Ruparelia N, Chai JT, Fisher EA, Choudhury RP (2017) Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 14(3):133–144

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z (2015) Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int 2015:524756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2):150–156

    Article  CAS  PubMed  Google Scholar 

  • Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y et al (2015) Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon-gamma-induced HLA expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD Scid gamma mice. Stem Cells 33(12):3452–3467

    Article  CAS  PubMed  Google Scholar 

  • Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365(3):563–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Gan X, Cheheltani R, Curran E, Lamberti G, Krynska B et al (2014) Targeted delivery of vascular endothelial growth factor improves stem cell therapy in a rat myocardial infarction model. Nanomedicine 10(8):1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA et al (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214

    Article  PubMed  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  • Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article  CAS  PubMed  Google Scholar 

  • van den Akker F, de Jager SC, Sluijter JP (2013) Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediat Inflamm 2013:181020

    Google Scholar 

  • Via AG, Frizziero A, Oliva F (2012) Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2(3):154–162

    PubMed  Google Scholar 

  • Vittorio O, Jacchetti E, Pacini S, Cecchini M (2013) Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol (Camb) 5(2):291–299

    Article  CAS  Google Scholar 

  • Wei D, Qing-wei C, Xing-sheng L et al (2011) Bone marrow mesenchymal stem cells prevent myocardial fibrosis via nuclear factor kappa B signaling pathway. J Clin Rehabil Tissue Eng Res 15:3494–3497

    Google Scholar 

  • Wei F, Wang TZ, Zhang J, Yuan ZY, Tian HY, Ni YJ et al (2012) Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats. Basic Res Cardiol 107(4):274

    Article  PubMed  CAS  Google Scholar 

  • White IA, Sanina C, Balkan W, Hare JM (2016) Mesenchymal stem cells in cardiology. Methods Mol Biol 1416:55–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Zhang R, Zou Q, Chen Y, Zhou M, Li X et al (2018) Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep 8(1):5014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon CH, Koyanagi M, Iekushi K, Seeger F, Urbich C, Zeiher AM et al (2010) Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation 121(18):2001–2011

    Article  PubMed  Google Scholar 

  • Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H et al (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:761643

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The figures were created with the support of BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Murat Elçin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Öztürk, S., Elçin, A.E., Elçin, Y.M. (2020). Functions of Mesenchymal Stem Cells in Cardiac Repair. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 11. Advances in Experimental Medicine and Biology(), vol 1312. Springer, Cham. https://doi.org/10.1007/5584_2020_598

Download citation

Publish with us

Policies and ethics