Skip to main content

Extracellular Vesicle Therapeutics in Regenerative Medicine

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 11

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1312))

Abstract

Extracellular vesicles (EVs) are nano-sized, cell-released vesicles which contain lipids, proteins, and nucleic acids derived from the parental cells. EVs play an important role in intercellular communication and influence both physiological and pathological conditions. They are increasingly explored as potential therapeutic agents since they can cross biological barriers, their cargo is protected from degradation and they are involved in the transfer of bioactive components. EVs can promote tissue regeneration and might be alternatives to cell therapy. They can be used both in their native form, and as delivery vehicles for therapeutic agents. However, there are many hurdles to overcome for broad clinical application of EVs as therapeutics. Here, we review recent conditions regarding EVs therapeutics in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EV:

Extracellular vesicle

MSC:

Mesenchymal stromal cell

CNS:

Central nervous system

GvHD:

Graft versus host disease

iPSC:

Induced pluripotent stem cell

SEC:

Size-exclusion chromatography

References

  • Álvarez-Viejo M (2020) Mesenchymal stem cells from different sources and their derived exosomes: a pre-clinical perspective. World J Stem Cells 12:100–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminzadeh MA et al (2015) Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J 36:751–762

    Article  CAS  PubMed  Google Scholar 

  • Arntz OJ et al (2015) Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 59:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Ban JJ, Lee M, Im W, Kim M (2015) Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 461:76–79

    Article  CAS  PubMed  Google Scholar 

  • Batrakova EV, Kim MS, Hill C (2016) Using exosomes, naturally-equipped nanocarriers, for drug delivery:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030.Using

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15. https://doi.org/10.1016/j.stem.2011.06.008

  • Caplan AI, Manuscript A (2012) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  Google Scholar 

  • Chen TS et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galipeau J, Sensébé L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Q et al (2014) MiRNA in plasma exosome is stable under different storage conditions. Molecules 19:1568–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S et al (2019) Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and Tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 13:10015–10028

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Aranda I et al (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570

    Article  PubMed  PubMed Central  Google Scholar 

  • Hergenreider E et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  • Imai T et al (2015) Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. 1:1–8

    Google Scholar 

  • Ju S et al (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 21:1345–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordelas L et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973

    Article  CAS  PubMed  Google Scholar 

  • Lai RC et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  • Luarte A, Bátiz LF, Wyneken U, Lafourcade C (2016) Potential therapies by stem cell-derived exosomes in CNS diseases: focusing on the neurogenic niche. Stem Cells Int 2016

    Google Scholar 

  • Monsel A et al (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar W et al (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20:1–11

    Article  Google Scholar 

  • Ning H et al (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22:593–599

    Article  CAS  PubMed  Google Scholar 

  • Posch A (2015) A protocol for exosome isolation and characterization. 1295

    Google Scholar 

  • Rutering J et al (2016) Exosomes as drug delivery vehicles for Parkinson’s disease therapy 5:1–8

    Google Scholar 

  • Sjöqvist S et al (2019) Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles 8:1565264

    Article  PubMed  PubMed Central  Google Scholar 

  • Sjoqvist S et al (2019) Oral keratinocyte-derived exosomes regulate proliferation of fibroblasts and epithelial cells. Biochem Biophys Res Commun 514:706–712

    Article  CAS  PubMed  Google Scholar 

  • Squillaro T, Peluso G, Galderisi U (2016) Review clinical trials with mesenchymal stem cells : an update 25:829–848

    Google Scholar 

  • Taheri B et al (2019) Induced pluripotent stem cell-derived extracellular vesicles: a novel approach for cell-free regenerative medicine. J Cell Physiol 234:8455–8464

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y et al (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165:77–84

    Article  CAS  PubMed  Google Scholar 

  • Tan JL et al (2018) Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl Med. https://doi.org/10.1002/sctm.17-0185

  • Théry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7

    Google Scholar 

  • Tögel F, Hu Z, Weiss K (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol 84148:31–42

    Google Scholar 

  • Vrijsen KR et al (2016) Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Watson DC et al (2016) Biomaterials Ef fi cient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiklander OPB (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. 1:1–13

    Google Scholar 

  • Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S (2019) Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11:eaav8521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell vesicles 2:1–25

    Article  Google Scholar 

  • Wolf P (1989) The nature and significance of platelet products in human plasma. Connect Tissue Res 23:123–136

    Article  Google Scholar 

  • Xing, Z., Zhao, C., Liu, H. & Fan, Y. Endothelial progenitor cell-derived extracellular vesicles : a novel candidate for regenerative medicine and disease treatment. 2000255, (2020)

    Google Scholar 

  • Yamashita T, Takahashi Y, Takakura Y (2018) Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 41:835–842

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2019) Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics 9:6976–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Tian X, Hao J, Xu G, Zhang W (2020) Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant 29:1–14

    Google Scholar 

  • Zhao Y et al (2014) GDNF-transfected macrophages produce potent neuroprotective effects in parkinson’s disease mouse model. PLoS One 9:1–11

    Google Scholar 

  • Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure Statement

Aya Imafuku and Sebastian Sjoqvist are founders and owners of ExTherea Inc., Kanagawa, Japan. Sebastian Sjoqvist is employed by Takeda Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Sjoqvist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imafuku, A., Sjoqvist, S. (2020). Extracellular Vesicle Therapeutics in Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 11. Advances in Experimental Medicine and Biology(), vol 1312. Springer, Cham. https://doi.org/10.1007/5584_2020_599

Download citation

Publish with us

Policies and ethics