Skip to main content

Cognitive Informatics

  • Chapter
  • First Online:
Biomedical Informatics

Abstract

The introduction of new health information technologies provides both great opportunities but presents significant cognitive challenges. Cognitive science is a multidisciplinary domain of inquiry devoted to the study of cognition and its role in intelligent agency. It incorporates basic science research related to attention, memory, reasoning, and comprehension as well as applied research pertaining to human-computer interaction and human factors. This chapter introduces cognitive research in healthcare and informatics, a discipline referred to as cognitive informatics. It presents the basic theoretical underpinnings of cognitive science with a focus on information-processing, natural language representation and distributed cognition frameworks. The chapter begins with a historical overview of research in related areas such as medical cognition, the acquisition of expertise and patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term protocol refers to that which is produced by a subject during testing (e.g., a verbal record). It differs from the more common use of protocol as defining a code or set of procedures governing behavior or a situation.

References

  • Akin, O. (1982). The psychology of architecture design. London: Pion.

    Google Scholar 

  • Allard, F., & Starkes, J. L. (1991). Motor-skill experts in sports, dance, and other domains. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 126–150). New York: Cambridge University Press.

    Google Scholar 

  • Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). New York: Freeman.

    Google Scholar 

  • Anderson, J. R. (2013). The architecture of cognition. New York: Psychology Press.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic.

    Google Scholar 

  • Balogh, E. P., Miller, B. T., & Ball, J. R. (2015). Improving diagnosis in health care. Washington, DC: National Academy Press.

    Book  Google Scholar 

  • Bartolomeo, P. (2008). The neural correlates of visual mental imagery: An ongoing debate. Cortex, 44(2), 107–108. S0010-9452(07)00016-0 [pii].

    Article  PubMed  Google Scholar 

  • Bechtel, W., Abrahamsen, A., & Graham, G. (1998). Part I: The life of cognitive science. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science Blackwell companions to philosophy (Vol. 13, pp. 2–104). Malden: Blackwell.

    Google Scholar 

  • Bloomrosen, M., Starren, J., Lorenzi, N. M., Ash, J. S., Patel, V. L., & Shortliffe, E. H. (2011). Anticipating and addressing the unintended consequences of health IT and policy: A report from the AMIA 2009 health policy meeting. Journal of American Medical Informatics Association: JAMIA, 18(1), 82–90. http://doi.org/18/1/82 [pii]10.1136/jamia.2010.007567.

    Google Scholar 

  • Bruer, J. T. (1993). Schools for thought: A science of learning in the classroom. Cambridge: MIT Press.

    Google Scholar 

  • Carayon, P., Karsh, B.-T., Gurses, A. P., Holden, R. J., Hoonakker, P., Hundt, A. S., Wetterneck, T. (2011). Macroergonomics in patient care and health care safety. In D. G. Morrow (Ed.), Reviews of human factors and ergonomics (Vol. 8). Santa Monica, CA: Human Factors and Ergonomics Society.

    Google Scholar 

  • Carayon, P. (2012). Handbook of human factors and ergonomics in health care and patient safety (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale: L. Erlbaum Associates.

    Google Scholar 

  • Carroll, J. M. (2003). HCI models, theories, and frameworks: Toward a multidisciplinary science. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.

    Article  Google Scholar 

  • Chapanis, A. (1996). Human factors in systems engineering. New York: Wiley.

    Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.

    Article  Google Scholar 

  • Chi, M. T. H., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Chi, M. T. H., Glaser, R., & Farr, M. J. (1988). The nature of expertise. Hillsdale: L. Erlbaum Associates.

    Google Scholar 

  • Clancey, W. J., & Shortliffe, E. H. (1984). Readings in medical artificial intelligence: The first decade. Reading: Addison-Wesley.

    Google Scholar 

  • DeGroot, A. T. (1965). Thought and choice in chess. The Hague: Mouton.

    Google Scholar 

  • Duch, W., Oentaryo, R. J., & Pasquier, M. (2008). Cognitive architectures: Where do we go from here?. Paper presented at the proceeding of the 2008 conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference.

    Google Scholar 

  • Elstein, K. A., Shulman, L. S., & Sprafka, S. A. (1978). Medical problem solving: An analysis of clinical reasoning. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Ericsson, K. A. (1996). The road to excellence: The acquisition of expert performance in the arts and sciences sports and games. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Ericsson, K. A. (2006). The Cambridge handbook of expertise and expert performance. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (Rev. ed.). Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Ericsson, K. A., & Smith, J. (1991). Toward a general theory of expertise: Prospects and limits. New York: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A. (2009). Enhancing the development of professional performance: Implications from the study of deliberate practice. In K. A. Ericsson (Ed.), The development of professional expertise: Toward measurement of expert performance and design of optimal learning environments (pp. 405–431). New York: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A., Hoffman, R. R., Kozbelt, A., & Williams, A. M. (Eds.). (2018). The Cambridge handbook of expertise and expert performance. UK: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A. (Ed.). (1996). The road to excellence: The acquisition of expert performance in the arts and sciences, sports. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Estes, W. K. (1975). The state of the field: General problems and issues of theory and metatheory. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (Vol. 1). Hillsdale/New York: L. Erlbaum Associates.

    Google Scholar 

  • Evans, D. A., & Gadd, C. S. (1989). Managing coherence and context in medical problem-solving discourse. In D. A. Evans & V. L. Patel (Eds.), Cognitive science in medicine: Biomedical modeling (pp. 211–255). Cambridge, MA: MIT Press.

    Chapter  Google Scholar 

  • Evans, D. A., & Patel, V. L. (1989). Cognitive science in medicine. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Feltovich, P. J., Johnson, P. E., Moller, J. H., & Swanson, D. B. (1984). The role and development of medical knowledge in diagnostic expertise. In W. J. Clancey & E. H. Shortliffe (Eds.), Readings in medical artificial intelligence: The first decade (pp. 275–319). Reading: Addison Wesley.

    Google Scholar 

  • Fisk, A. D., Rogers, W. A., Charness, N., Czaja, S. J., & Sharit, J. (2009). Designing for older adults: Principles and creative human factors approaches. Boca Raton: CRC Press.

    Google Scholar 

  • Flin, R., & Patey, R. (2009). Improving patient safety through training in non-technical skills. British Medical Journal, 339, B3595. https://doi.org/10.1136/Bmj.B3595.

    Article  PubMed  Google Scholar 

  • Frederiksen, C. H. (1975). Representing logical and semantic structure of knowledge acquired from discourse. Cognitive Psychology, 7(3), 371–458.

    Article  Google Scholar 

  • Gardner, H. (1985). The mind’s new science: A history of the cognitive revolution. New York: Basic Books.

    Google Scholar 

  • Gillan, D. J., & Schvaneveldt, R. W. (1999). Applying cognitive psychology: Bridging the gulf between basic research and cognitive artifacts. In F. T. Durso, R. Nickerson, R. Schvaneveldt, S. Dumais, M. Chi, & S. Lindsay (Eds.), Handbook of applied cognition (pp. 3–31). Chichester/New York: Wiley.

    Google Scholar 

  • Glaser, R. (Ed.). (2000). Advances in instructional psychology: Education design and cognitive science (Vol. 5). Mahwah: Lawrence Erlbaum and Associates.

    Google Scholar 

  • Greeno, J. G., & Simon, H. A. (1988). Problem solving and reasoning. In R. C. Atkinson & R. J. Herrnstein (Eds.), Stevens’ handbook of experimental psychology Vol 1: Perception and motivation; Vol 2: Learning and cognition (Vol. 1, 2nd ed., pp. 589–672). New York: Wiley.

    Google Scholar 

  • Harrington, L. (2015). Electronic health record workflow: Why more work than flow? Advanced Critical Care AACN, 26(1), 5–9.

    Article  Google Scholar 

  • Hazlehurst, B., McMullen, C., Gorman, P., & Sittig, D. (2003). How the ICU follows orders: Care delivery as a complex activity system. AMIA Annual Symposium Proceedings, 2003, 284–288. D030003599 [pii].

    PubMed Central  Google Scholar 

  • Hazlehurst, B., McMullen, C. K., & Gorman, P. N. (2007). Distributed cognition in the heart room: How situation awareness arises from coordinated communications during cardiac surgery. Journal of Biomedical Informatics, 40(5), 539–551. https://doi.org/10.1016/j.jbi.2007.02.001. S1532-0464(07)00008-1 [pii].

    Article  PubMed  Google Scholar 

  • Henriksen, K. (2010). Partial truths in the pursuit of patient safety. BMJ Quality & Safety Health Care, 19(3), i3–i7.

    Article  Google Scholar 

  • Hilgard, E. R., & Bower, G. H. (1975). Theories of learning (4th ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Hoffman, R. R. (Ed.). (1992). The psychology of expertise: Cognitive research and empirical AI. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hoffman, R. R., Shadbolt, N. R., Burton, A. M., & Klein, G. (1995). Eliciting knowledge from experts – A methodological analysis. Organizational Behavior and Human Decision Processes, 62(2), 129–158.

    Google Scholar 

  • Horsky, J., Kaufman, D. R., & Patel, V. L. (2003a). The cognitive complexity of a provider order entry interface. AMIA Annual Symposium Proceedings, 2013, 294–298. PMID: 14728181; PMCID: PMC1480200.

    Google Scholar 

  • Horsky, J., Kaufman, D. R., Oppenheim, M. I., & Patel, V. L. (2003b). A framework for analyzing the cognitive complexity of computer-assisted clinical ordering. Journal of Biomedical Informatics, 36(1–2), 4–22. https://doi.org/10.1016/S1532-0464(03)00062-5.

  • Horsky, J., Kuperman, G. J., & Patel, V. L. (2005). Comprehensive analysis of a medication dosing error related to CPOE. Journal of the American Medical Informatics Association: Journal of the American Medical Informatics Association JAMIA, 12(4), 377–382. https://doi.org/10.1197/jamia.M1740. M1740 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.

    Google Scholar 

  • Joseph, G. M., & Patel, V. L. (1990). Domain knowledge and hypothesis generation in diagnostic reasoning. Medical Decision Making, 10, 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Karsh, B., Weinger, M. B., Abbott, P. A., & Wears, R. L. (2010). Health information technology: Fallacies and sober realities. Journal of the American Medical Informatics Association, 17(6), 617–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassirer, J. P. (1989). Diagnostic reasoning. Annals of Internal Medicine, 110, 893–900.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, D. R., Patel, V. L., & Magder, S. (1996). The explanatory role of spontaneously generated analogies in a reasoning about physiological concepts. International Journal of Science Education, 18, 369–386.

    Article  Google Scholar 

  • Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Klienmuntz, B., & McLean, R. S. (1968). Diagnostic interviewing by digital computer. Behavioral Science, 13(1), 75–80.

    Article  Google Scholar 

  • Kohn, L. T., Corrigan, J., & Donaldson, M. S. (2000). To err is human: Building a safer health system (Vol. 6). Washington, DC: National Academy Press.

    Google Scholar 

  • Koppel, R., Metlay, J. P., Cohen, A., Abaluck, B., Localio, A. R., Kimmel, S. E., & Strom, B. L. (2005). Role of computerized physician order entry systems in facilitating medication errors. Journal of the American Medical Association JAMA, 293(10), 1197–1203.

    Article  CAS  PubMed  Google Scholar 

  • Kushniruk, A. W., Kaufman, D. R., Patel, V. L., Levesque, Y., & Lottin, P. (1996). Assessment of a computerized patient record system: A cognitive approach to evaluating medical technology. MD Computing, 13(5), 406–415.

    CAS  PubMed  Google Scholar 

  • Kushniruk, A. W., Triola, M. M., Borycki, E. M., Stein, B., & Kannry, J. L. (2005). Technology induced error and usability: The relationship between usability problems and prescription errors when using a handheld application. International Journal of Medical Informatics, 74(7–8), 519–526. https://doi.org/10.1016/j.ijmedinf.2005.01.003. S1386-5056(05)00011-0 [pii].

    Article  PubMed  Google Scholar 

  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  • Ledley, R. S., & Lusted, L. B. (1959). Probability, logic and medical diagnosis. Science, 130(3380), 892–930.

    Article  CAS  PubMed  Google Scholar 

  • Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., & Wang, Y. (1988). Expertise in a complex skill: Diagnosing x-ray pictures. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 311–342). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lieto, A., Lebiere, C., & Oltramari, A. (2018). The knowledge level in cognitive architectures: Current limitations and possible developments. Cognitive Systems Research, 48, 39–55.

    Article  Google Scholar 

  • Lin, L., Isla, R., Doniz, K., Harkness, H., Vicente, K. J., & Doyle, D. J. (1998). Applying human factors to the design of medical equipment: Patient-controlled analgesia. Journal of Clinical Monitoring and Computing, 14(4), 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Magnani, L. (2001). Abduction, reason, and science: Processes of discovery and explanation. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Mayes, T. J., Draper, S. W., McGregor, A. M., & Koatley, K. (1988). Information flow in a user interface: The effect of experience and context on the recall of MacWrite screens. Paper presented at the conference on people and computers IV, Cambridge.

    Google Scholar 

  • Morel, G., Amalberti, R., & Chauvin, C. (2008). Articulating the differences between safety and resilience: The decision-making process of professional sea-fishing skippers. Human Factors, 50(1), 1–16.

    Article  PubMed  Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User centered system design: New perspectives on human-computer interaction (pp. 31–61). Hillsdale: Lawrence Erlbaum Associates.

    Chapter  Google Scholar 

  • Norman, D. A. (1993). Things that make us smart: defending human attributes in the age of the machine. Reading, Mass.: Addison-Wesley Pub. Co.

    Google Scholar 

  • Patel, V. L., & Cohen, T. (2008). New perspectives on error in critical care. Current Opinions in Critical Care, 14(4), 456–459.

    Article  Google Scholar 

  • Patel, V. L., & Groen, G. J. (1986). Knowledge based solution strategies in medical reasoning. Cognitive Science, 10(1), 91–116.

    Article  Google Scholar 

  • Patel, V. L., & Groen, G. J. (1991a). Developmental accounts of the transition from medical student to doctor: Some problems and suggestions. Medical Education, 25(6), 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Patel, V. L., & Groen, G. J. (1991b). The general and specific nature of medical expertise: A critical look. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 93–125). New York: Cambridge University Press.

    Google Scholar 

  • Patel, V. L., & Kannampallil, T. G. (2015). Cognitive informatics in biomedicine and healthcare. Journal of Biomedical Informatics, 53, 3–14.

    Article  PubMed  Google Scholar 

  • Patel, V. L., & Kaufman, D. R. (1998). Medical informatics and the science of cognition. Journal of the American Medical Informatics Association JAMIA, 5(6), 493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, V. L., & Ramoni, M. F. (1997). Cognitive models of directional inference in expert medical reasoning. In P. J. Feltovich, K. M. Ford, & R. R. Hoffman (Eds.), Expertise in context: Human and machine (pp. 67–99). Cambridge: The MIT Press.

    Google Scholar 

  • Patel, V. L., & Zhang, J. (2007). Cognition and patient safety in healthcare. In F. T. Durso, R. S. Nickerson, S. Dumais, S. Lewandowsky, & T. Perfect (Eds.), Handbook of applied cognition (2nd ed., pp. 307–331). New York: Wiley.

    Chapter  Google Scholar 

  • Patel, V. L., Groen, G. J., & Arocha, J. F. (1990). Medical expertise as a function of task-difficulty. Memory and Cognition, 18(4), 394–406.

    Article  CAS  PubMed  Google Scholar 

  • Patel, V. L., Arocha, J. F., & Kaufman, D. R. (1994). Diagnostic reasoning and medical expertise. In D. L. Medin (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 31, pp. 187–252). San Diego: Academic Press.

    Google Scholar 

  • Patel, V. L., Kushniruk, A. W., Yang, S., & Yale, J. F. (2000). Impact of a computer-based patient record system on data collection, knowledge organization, and reasoning. Journal of the American Medical Informatics Association JAMIA, 7(6), 569–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, V. L., Cohen, T., Murarka, T., Olsen, J., Kagita, S., Myneni, S., et al. (2011). Recovery at the edge of error: Debunking the myth of the infallible expert. Journal of Biomedical Informatics, 44(3), 413–424.

    Article  PubMed  Google Scholar 

  • Patel, V. L., Kaufman, D. R., & Kannampallil, T. G. (2013a). Diagnostic reasoning and decision making in the context of health information technology. In D. Marrow (Ed.), Reviews of human factors and ergonomics (Vol. 8). Thousand Oaks: SAGE Publications.

    Google Scholar 

  • Patel, V. L., Kaufman, D. R., & Kannampallil, T. G. (2013b). Diagnostic reasoning and decision making in the context of health information technology. Reviews of Human Factors and Ergonomics, 8(1), 149–190.

    Article  CAS  Google Scholar 

  • Patel, V. L., Kaufman, D. R., & Cohen, T. (2014). Cognitive informatics in health and biomedicine: Case studies on critical care, complexity and errors (pp. 1–13). London: Springer.

    Google Scholar 

  • Patel, V. L., Kannampallil, T. G., & Shortliffe, E. H. (2015a). Role of cognition in generating and mitigating clinical errors. BMJ Quality and Safety, 24, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Patel, V. L., Kannampallil, T. G., & Kaufman, D. R. (Eds.). (2015b). Cognitive informatics in health and biomedicine: Human computer interaction. London: Springer.

    Google Scholar 

  • Patel, V. L., Arocha, J. F., & Ancker, J. (2017). Cognitive informatics in health and biomedicine: Understanding and modeling health behaviors. London: Springer.

    Book  Google Scholar 

  • Patel, V. L., Kaufman, D. R., & Kannampallil, T. G. (2018). Diagnostic reasoning and expertise in healthcare. In P. Ward, J. M. Schraagen, J. Gore, & E. Roth (Eds.), The Oxford handbook of expertise: Research & application. UK: Oxford University Press.

    Google Scholar 

  • Patel, V. L., Evans, D. A., & Kaufman, D. R. (1989). Cognitive framework for doctor-patient communication. In D. A. Evans & V. L. Patel (Eds.), Cognitive science in medicine: Biomedical modeling (pp. 257–312). Cambridge, MA: MIT Press..

    Google Scholar 

  • Payne, S. J. (2003). Users’ mental models: The very ideas. In J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward a multidisciplinary science (1st ed., pp. 135–156). San Francisco: Morgan Kaufmann.

    Chapter  Google Scholar 

  • Peirce, C. S. (1955). Philosophical writings of Peirce. Ed. by Justus Buchler. New York: Dover.

    Google Scholar 

  • Peleg, M., Gutnik, L. A., Snow, V., & Patel, V. L. (2006). Interpreting procedures from descriptive guidelines. Journal of Biomedical Informatics, 39, 184–195.

    Article  PubMed  Google Scholar 

  • Perkins, D. N., Schwartz, S., & Simmons, R. (1990). A view from programming. In M. Smith (Ed.), Toward a unified theory of problem solving: Views from content domains (pp. 45–67). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Ramoni, M., Stefanelli, M., Magnani, L., & Barosi, G. (1992). An epistemological framework for medical knowledge-based systems. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1361–1375.

    Article  Google Scholar 

  • Reason, J. T. (1990). Human error. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Rimoldi, H. J. (1961). The test of diagnostic skills. Journal of Medical Education, 36, 73–79.

    Google Scholar 

  • Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.

    PubMed  Google Scholar 

  • Rogers, Y. (2004). New theoretical approaches for HCI. Annual Review of Information Science and Technology, 38, 87–143.

    Article  Google Scholar 

  • Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2–9. https://doi.org/10.3102/0013189x020003002.

    Article  Google Scholar 

  • Senders JW. (1993) Theory and analysis of typical errors in a medical setting. Hospital Pharmacy. 1993 Jun;28(6):505–508.

    Google Scholar 

  • Sharp, H., Preece, J., & Rogers, Y. (2019). Interaction design: Beyond human-computer interaction. Hoboken, NJ: Wiley.

    Google Scholar 

  • Shortliffe, E. H., & Blois, M. S. (2001). The computer meets medicine and biology: Emergence of a discipline. In E. H. Shortliffe & L. E. Perreault (Eds.), Medical informatics: Computer applications in health care and biomedicine (2nd ed., pp. 3–40). New York: Springer.

    Chapter  Google Scholar 

  • Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R. S. Siegler (Ed.), Children’s thinking: What develops? (Vol. xi, pp. 325–348). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sloboda, J. (1991). Musical expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 153–171). New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., & Horvath, J. A. (Eds.). (1999). Tacit knowledge in professional practice: Researcher and practitioner. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Suchman, L. A. (1987). Understanding computers and cognition: A new foundation for design – Winograd, T., Flores, F. Artificial Intelligence, 31(2), 227–232.

    Google Scholar 

  • Sussman, S. Y. (2001). Handbook of program development for health behavior research & practice. Thousand Oaks: Sage.

    Book  Google Scholar 

  • van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic.

    Google Scholar 

  • Vicente, K. J. (1999). Cognitive work analysis: Toward safe, productive & healthy computer-based work. Mahwah: Lawrence Erlbaum Associates Publishers.

    Book  Google Scholar 

  • Weinger, M. B., & Slagle, J. (2001). Human factors research in anesthesia patient safety. Proceedings of the AMIA Symposium, 756–760. PMID: 11825287; PMCID: PMC2243459.

    Google Scholar 

  • White, B. Y., & Frederiksen, J. R. (1990). Causal model progressions as a foundation for intelligent learning environments. In W. J. Clancey & E. Soloway (Eds.), Artificial intelligence and learning environments special issues of “Artificial Intelligence: An International Journal” (pp. 99–157).

    Google Scholar 

  • Woods, D. D., Patterson, E. S., & Cook, R. I. (2008). Behind human error: Taming complexity to improve patient safety. In P. Carayon (Ed.), Handbook of human factors and ergonomics in health care and patient safety (pp. 459–476). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wright, P. C., Fields, R. E., & Harrison, M. D. (2000). Analyzing human-computer interaction as distributed cognition: The resources model. Human Computer Interaction, 15(1), 1–41.

    Article  Google Scholar 

  • Zhang, J., Johnson, T. R., Patel, V. L., Paige, D. L., & Kubose, T. (2003). Using usability heuristics to evaluate patient safety of medical devices. Journal of Biomedical Informatics, 36(1–2), 23–30. S1532046403000601 [pii].

    Article  PubMed  Google Scholar 

  • Zhang, J., Patel, V. L., Johnson, T. R., & Shortliffe, E. H. (2004). A cognitive taxonomy of medical errors. Journal of Biomedical Informatics, 37(3), 193–204.

    Article  PubMed  Google Scholar 

  • Zuriff, G. E. (1985). Behaviorism: A conceptual reconstruction. New York: Columbia University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimla L. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V.L., Kaufman, D.R. (2021). Cognitive Informatics. In: Shortliffe, E.H., Cimino, J.J. (eds) Biomedical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-58721-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58721-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58720-8

  • Online ISBN: 978-3-030-58721-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics