Skip to main content

Bioinformatics

  • Chapter
  • First Online:
Biomedical Informatics

Abstract

This chapter introduces bioinformatics and the impacts of data generated by advanced biotechnology applications. A brief introduction regarding the underlying biology of these technologies is described. The types of data being generated and how they are important clinically are introduced. An overview of notable methods that operate on those data types and their history is discussed. Finally, bioinformatic databases and resources are presented as well as modern approaches, leveraging the Internet, for making that data more useful, including the interoperability of data in large networked databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    7 https://www.nhlbiwgs.org/ (accessed December 1, 2018).

  2. 2.

    7 https://www.ncbi.nlm.nih.gov/clinvar/ (accessed November 1, 2018).

  3. 3.

    7 http://www.hgmd.org/ (accessed November 1, 2018).

  4. 4.

    7 http://www.pharmgkb.org/ (accessed November 1, 2018).

  5. 5.

    7 http://www.genome.gov/10002328 (accessed November 1, 2018).

  6. 6.

    7 http://www.personalgenomes.org/ (accessed November 1, 2018).

  7. 7.

    7 https://cser-consortium.org/ (accessed November 1, 2018).

  8. 8.

    If you are not familiar with the basic terminology of molecular biology and genetics, reference to an introductory textbook in the area would be helpful before you read the rest of this chapter.

  9. 9.

    7 <ExternalRef><RefSource>http://www.genome.gov/sequencingcosts/ (accessed November 1, 2018).

  10. 10.

    For more information see 7 http://www.rcsb.org/ (accessed November 1, 2018).

  11. 11.

    7 http://scop2.mrc-lmb.cam.ac.uk/ (accessed December 1, 2018).

  12. 12.

    7 http://en.wikipedia.org/wiki/DNA_sequencing (accessed November 1, 2018).

  13. 13.

    See 7 http://www.rcsb.org/ (accessed December 1, 2018).

  14. 14.

    7 http://www.ncbi.nlm.nih.gov/genbank/ (accessed December 1, 2018).

  15. 15.

    7 http://www.uniprot.org/ (accessed December 1, 2018).

  16. 16.

    7 http://www.ncbi.nlm.nih.gov/omim (accessed December 1, 2018).

  17. 17.

    7 http://www.ncbi.nlm.nih.gov/pubmed (accessed December 1, 2018).

  18. 18.

    7 https://pymol.org/ (accessed December 1, 2018).

  19. 19.

    7 http://www.cgl.ucsf.edu/chimera/ (accessed December 1, 2018).

  20. 20.

    7 http://predictioncenter.org/ (accessed December 1, 2018).

  21. 21.

    7 https://www.nature.com/articles/d41586-020-03348-4.

  22. 22.

    7 http://bioconductor.org/ (accessed December 1, 2018).

  23. 23.

    7 http://www.cs.waikato.ac.nz/ml/weka/ (accessed December 1, 2018).

  24. 24.

    7 http://en.wikipedia.org/wiki/Bonferroni_correction (accessed December 1, 2018).

  25. 25.

    7 https://www.ncbi.nlm.nih.gov/search/ (accessed December 7th, 2020).

  26. 26.

    7 http://bioconductor.org/ (accessed December 1, 2018).

  27. 27.

    7 http://www.ornl.gov/sci/techresources/Human_Genome/research/bermuda.shtml (accessed December 1, 2018).

  28. 28.

    7 http://edocket.access.gpo.gov/2009/E9-29322.htm (accessed December 1, 2018).

  29. 29.

    7 http://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-032.html (accessed December 1, 2018).

  30. 30.

    7 https://fairsharing.org/ (accessed December 1, 2018).

  31. 31.

    7 https://datamed.org/ (accessed April 20, 2019).

  32. 32.

    7 http://www.open-bio.org/ (accessed December 1, 2018).

  33. 33.

    7 https://metadatacenter.org/ (accessed December 1, 2018).

  34. 34.

    7 http://genome.ucsc.edu/ (accessed December 1, 2018).

  35. 35.

    7 https://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/ (accessed December 15, 2018).

  36. 36.

    7 https://www.rcsb.org/ (accessed December 18, 2018).

  37. 37.

    7 http://scop2.mrc-lmb.cam.ac.uk/ (accessed December 15, 2018).

  38. 38.

    7 http://ecocyc.org/ (accessed December 15, 2018).

  39. 39.

    7 http://www.genome.jp/kegg/pathway.html (accessed December 1, 2018).

  40. 40.

    7 http://www.ncbi.nlm.nih.gov/omim/ (accessed December 1, 2018).

References

  • Altschul, S. F., Gish, W., Mille, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  Google Scholar 

  • Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., et al. (2010). Clinical assessment incorporating a personal genome. The Lancet, 375, 1525–1535.

    Article  CAS  Google Scholar 

  • Babior, B. M., & Matzner, Y. (1997). The familial Mediterranean fever gene—cloned at last. The New England Journal of Medicine, 337(21), 1548–1549.

    Article  CAS  Google Scholar 

  • Bai, C., & Elledge, S. J. (1997). Gene identification using the yeast two-hybrid system. Methods in Enzymology, 283, 141–156.

    Article  CAS  Google Scholar 

  • Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21.

    Article  CAS  Google Scholar 

  • Brown, D. G., Rao, S., Weir, T. L., O’Malia, J., Bazan, M., Brown, R. J., & Ryan, E. P. (2016). Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer and Metabolism, 4, 11.

    Article  Google Scholar 

  • Burley, S. K., & Bonanno, J. B. (2002). Structuring the universe of proteins. Annual Review of Genomics and Human Genetics, 3, 243–262.

    Article  CAS  Google Scholar 

  • Cech, T. R. (2000). Structural biology. The ribosome is a ribozyme. Science, 289(5481), 878–879.

    Article  CAS  Google Scholar 

  • Davies, K. (2010). Physicians and their use of information: A survey comparison between the United States, Canada, and the United Kingdom. Journal of the Medical Library Association, 99, 88–91.

    Article  Google Scholar 

  • Dayhoff, M. O. (1974). Computer analysis of protein sequences. Federation Proceedings, 33(12), 2314–2316.

    CAS  PubMed  Google Scholar 

  • Durfy, S. J. (1993). Ethics and the human genome project. Archives of Pathology & Laboratory Medicine, 117(5), 466–469.

    CAS  Google Scholar 

  • Fischer, B. A., & Zigmond, M. J. (2010). The essential nature of sharing in science. Science and Engineering Ethics, 16(4), 783–799.

    Article  Google Scholar 

  • Gibson, K., & Scheraga, H. (1967). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences, 58(2), 420–427.

    Article  CAS  Google Scholar 

  • Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128(4), 635–638.

    Article  CAS  Google Scholar 

  • Gusfield, D. (1997). Algorithms on strings, trees and sequences: Computer science and computational biology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  Google Scholar 

  • Karplus, M., & Weaver, D. L. (1976). Protein-folding dynamics. Nature, 260(5550), 404–406.

    Article  CAS  Google Scholar 

  • Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B., Jr., et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150(2), 389–401.

    Article  CAS  Google Scholar 

  • Kent, W. J. (2003). BLAT—the BLAST-like alignment tool. Genome Research, 12(4), 656–664.

    Article  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  CAS  Google Scholar 

  • Langridge, R. (1974). Interactive three-dimensional computer graphics in molecular biology. Federation Proceedings, 33(12), 2332–2335.

    CAS  PubMed  Google Scholar 

  • Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., et al. (1997). Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proceedings of the National Academy of Sciences, 94(24), 13057–13062.

    Article  CAS  Google Scholar 

  • Levitt, M. (1983). Molecular dynamics of native protein. I. Computer simulation of trajectories. Journal of Molecular Biology, 168(3), 595–617.

    Article  CAS  Google Scholar 

  • Li, R., Li, Y., Kristiansen, K., & Wang, J. (2008). SOAP: Short oligonucleotide alignment program. Bioinformatics, 24(5), 713–714.

    Article  CAS  Google Scholar 

  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453.

    Article  CAS  Google Scholar 

  • Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., et al. (2010). Exome sequencing identifies the cause of a mendelian disorder. Nature Genetics, 42, 30–35.

    Article  CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65.

    Article  CAS  Google Scholar 

  • Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. Advances in Protein Chemistry, 34, 167–339.

    Article  CAS  Google Scholar 

  • Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., et al. (2020) Improved protein structure prediction using potentials from deep learning. Nature, 577, 706–710.

    Google Scholar 

  • Shapiro, E., Biezunner, T., & Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 14, 618–630.

    Article  CAS  Google Scholar 

  • Smith, T., & Waterman, M. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1), 195–197.

    Article  CAS  Google Scholar 

  • Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al. (2007). The OBO foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology, 25(11), 1251–1255.

    Article  CAS  Google Scholar 

  • Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9440–9445.

    Article  CAS  Google Scholar 

  • Van’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 484–485.

    Article  Google Scholar 

  • Wei, L., & Altman, R. B. (1998). Recognizing protein binding sites using statistical descriptions of their 3D environments. In Proceedings of the pacific symposium on Biocomputing ’98 (pp. 497–508), Singapore.

    Google Scholar 

  • Yan, J., & Gu, W. (2009). Gene expression microarrays. In Y. Lu & R. I. Mahato (Eds.), Cancer research pharmaceutical perspectives of cancer therapeutics (pp. 645–672). New York: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mooney, S.D., Tenenbaum, J.D., Altman, R.B. (2021). Bioinformatics. In: Shortliffe, E.H., Cimino, J.J. (eds) Biomedical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-58721-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58721-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58720-8

  • Online ISBN: 978-3-030-58721-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics