Skip to main content

Heart Rate Variability, Blood Pressure Variability: What Is Their Significance in Hypertension

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Abstract

Heart rate variability (HRV), the beat-to-beat variation in heart rate or the duration of the RR interval, is an important clinical and investigational tool. The inter-relationship of neurotransmitters in the parasympathetic and sympathetic nervous systems plays an important role in HRV. Absence of HRV is an important marker of imbalance between the two autonomic systems. Reduced HRV can predict incident hypertension.

Blood pressure variability (BPV) can occur between visits, over a 24-h period, and between visits over the longer term. Significant BPV has been associated with increased rates of stroke, cardiovascular (CV) events and other complications of hypertension. Understanding of the significance of BPV is evolving and more research is needed. Different antihypertensive drug classes may have differential impact on BPV. Calcium channel blockers have shown better efficacy than other drug classes for reducing visit-to-visit BPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mejía-Mejía E, Budidha K, Abay TY, May JM, Kyriacou PA. Heart rate variability (HRV) and pulse rate variability (PRV) for the assessment of autonomic responses. Front Physiol. 2020;11:779.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65.

    Google Scholar 

  3. Blood Pressure Lowering Treatment Trialists’ Collaboration. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet. 2021;397(10285):1625–36.

    Article  Google Scholar 

  4. Höcht C. Blood pressure variability: prognostic value and therapeutic implications. Int Sch Res Notices. 2013;2013:398485. https://doi.org/10.5402/2013/398485.

    Article  Google Scholar 

  5. Rosei EA, Chiarini G, Rizzoni D. How important is blood pressure variability? Eur Heart J Suppl. 2020;22(Suppl E):E1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song T, Qu XF, Zhang YT, Cao W, Han BH, Li Y, Piao JY, Yin LL, Da Cheng H. Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction. BMC Cardiovasc Disord. 2014;14:59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chessa M, Butera G, Lanza GA, Bossone E, Delogu A, De Rosa G, et al. Role of heart rate variability in the early diagnosis of diabetic autonomic neuropathy in children. Herz. 2002;27(8):785–90.

    Article  PubMed  Google Scholar 

  10. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

    Article  CAS  PubMed  Google Scholar 

  11. Julius S, Nesbitt S. Sympathetic overactivity in hypertension: a moving target. Am J Hypertens. 1996;9:113S–20S.

    Article  CAS  PubMed  Google Scholar 

  12. Julius S, Majahalme S. The changing face of sympathetic over activity in hypertension. Ann Med. 2000;32:365–70.

    Article  CAS  PubMed  Google Scholar 

  13. Palatini P, Julius S. Heart rate and the cardiovascular risk. J Hypertens. 1997;15:3–17.

    Article  CAS  PubMed  Google Scholar 

  14. Singh JP, Larson MG, Tsuji H, Evans JC, O'Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 1998;32(2):293–7.

    Article  CAS  PubMed  Google Scholar 

  15. Logvinenko A, Mishchenko L, Kupchynskaja E, Gulkevych O, Ovdiienko T, Bezrodnyi V, et al. Heart rate variability in patients with resistant arterial hypertension. J Hypertens. 2017;35:e223.

    Article  Google Scholar 

  16. Hoshi RA, Santos IS, Dantas EM, Andreão RV, Mill JG, Lotufo PA, Bensenor I. Reduced heart-rate variability and increased risk of hypertension—a prospective study of the ELSA-Brasil. J Hum Hypertens. 2021;35(12):1088–97. https://doi.org/10.1038/s41371-020-00460-w.

    Article  PubMed  Google Scholar 

  17. Julario R, Mulia E, Rachmi DA, A’yun MQ, Septianda I, Dewi IP, Juwita RR, Dharmadjati BB. Evaluation of heart rate variability using 24-hour Holter electrocardiography in hypertensive patients. J Arrhythmia. 2020;37(1):157–64.

    Article  Google Scholar 

  18. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension. 2003;42(6):1106–11.

    Article  CAS  PubMed  Google Scholar 

  19. Natarajan N, Balakrishnan AK, Ukkirapandian K. A study on analysis of heart rate variability in hypertensive individuals. Int J Biomed Adv Res. 2014;5:109–11.

    Article  Google Scholar 

  20. Khan AA, Junejo RT, Thomas GN, Fisher JP, Lip GYH. Heart rate variability in patients with atrial fibrillation and hypertension. Eur J Clin Investig. 2021;51(1):e13361.

    Article  Google Scholar 

  21. Yu Y, Xu Y, Zhang M, Wang Y, Zou W, Gu Y. Value of assessing autonomic nervous function by heart rate variability and heart rate turbulence in hypertensive patients. Int J Hypertens. 2018;2018:4067601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mori H, Saito I, Eguchi E, Maruyama K, Kato T, Tanigawa T. Heart rate variability and blood pressure among Japanese men and women: a community-based cross-sectional study. Hypertens Res. 2014;37(8):779–84.

    Article  PubMed  Google Scholar 

  23. Saito I, Takata Y, Maruyama K, Eguchi E, Kato T, Shirahama R, et al. Association between heart rate variability and home blood pressure: the toon health study. Am J Hypertens. 2018;31(10):1120–6.

    Article  PubMed  Google Scholar 

  24. Koichubekov BK, Sorokina MA, Laryushina YM, Turgunova LG, Korshukov IV. Nonlinear analyses of heart rate variability in hypertension. Ann Cardiol Angeiol (Paris). 2018;67(3):174–9.

    Article  CAS  Google Scholar 

  25. Jansson K, Östlund R, Nylander E, Dahlström U, Hagerman I, Karlberg K-E, et al. The effects of metoprolol and captopril on heart rate variability in patients with idiopathic dilated cardiomyopathy. Clin Cardiol. 1999;22(6):397–402.

    Article  CAS  PubMed  Google Scholar 

  26. Ma W, Yang Y, Qi L, Zhang B, Meng L, Zhang Y, Li M, Huo Y. Relation between blood pressure variability within a single visit and stroke. Int J Hypertens. 2021;2021:2920140.

    PubMed  PubMed Central  Google Scholar 

  27. Asayama K, Ohkubo T, Hanazawa T, Watabe D, et al.; Hypertensive Objective Treatment Based on Measurement by Electrical Devices of Blood Pressure (HOMED-BP) Study Investigator. Association between amplitude of seasonal variation in self-measured home blood pressure and cardiovascular outcomes: HOMED-BP (Hypertension Objective Treatment Based on Measurement By Electrical Devices of Blood Pressure) Study. J Am Heart Assoc. 2016;5:e002995.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen YK, Ni ZX, Li W, Xiao WM, Liu YL, Liang WC, Qu JF. Diurnal blood pressure and heart rate variability in hypertensive patients with cerebral small vessel disease: a case-control study. J Stroke Cerebrovasc Dis. 2021;30(5):105673.

    Article  PubMed  Google Scholar 

  29. Mehlum MH, Liestøl K, Kjeldsen SE, Julius S, Hua TA, Rothwell PM, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J. 2018;39(C):2243–51.

    Article  CAS  Google Scholar 

  30. Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Cozzio S, et al. Short-term blood pressure variability outweighs average 24-h blood pressure in the prediction of cardiovascular events in hypertension of the young. J Hypertens. 2019;37:1419–26.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou TL, Henry RMA, Stehouwer CDA, Van Sloten TT, Reesink KD, Kroon AA. Blood pressure variability, arterial stiffness, and arterial remodeling: the Maastricht study. Hypertension. 2018;72:1002–10.

    Article  CAS  PubMed  Google Scholar 

  32. Kim JS, Park S, Yan P, Jeffers BW. Effect of inter-individual blood pressure variability on the progression of atherosclerosis in carotid and coronary arteries: a post hoc analysis of the NORMALISE and PREVENT studies. Eur Hear J Cardiovasc Pharmacother. 2017;3:82–9.

    Google Scholar 

  33. Mustafa ER, Istrătoaie O, Mușetescu R. Blood pressure variability and left ventricular mass in hypertensive patients. Curr Health Sci J. 2016;42(1):47–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Wang F, Chen M, Wang X, Zheng J, Qin A. Twenty-four-hour systolic blood pressure variability and renal function decline in elderly male hypertensive patients with well-controlled blood pressure. Clin Interv Aging. 2018;13:533–40.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Filomena J, Riba-Llena I, Vinyoles E, Tovar JL, Mundet X, Castañé X, et al. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension. 2015;66(3):634–40.

    Article  CAS  PubMed  Google Scholar 

  36. Palatini P. Risk of developing foot ulcers in diabetes: contribution of high visit-to-visit blood pressure variability. J Hypertens. 2018;36(11):2132–4.

    Article  CAS  PubMed  Google Scholar 

  37. Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, et al. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014;37:585–90.

    Article  CAS  PubMed  Google Scholar 

  38. Robinson TG, Davison WJ, Rothwell PM, Potter JF. Randomised controlled trial of a Calcium Channel or Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker Regime to Reduce Blood Pressure Variability following Ischaemic Stroke (CAARBS): a protocol for a feasibility study. BMJ Open. 2019;9(2):e025301.

    PubMed  PubMed Central  Google Scholar 

  39. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375:906–15.

    Article  CAS  PubMed  Google Scholar 

  40. Webb AJ, Rothwell PM. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke. 2011;42:2860–5.

    Article  CAS  PubMed  Google Scholar 

  41. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M. Effects of amlodipine and valsartan on vascular damage and ambulatory blood pressure in untreated hypertensive patients. J Hum Hypertens. 2006;20:787–94.

    Article  CAS  PubMed  Google Scholar 

  42. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375:938–48.

    Article  PubMed  Google Scholar 

  43. Lacolley P, Bezie Y, Girerd X, Challande P, Benetos A, Boutouyrie P, Ghodsi N, Lucet B, Azoui R, Laurent S. Aortic distensibility and structural changes in sinoaortic-denervated rats. Hypertension. 1995;26:337–40.

    Article  CAS  PubMed  Google Scholar 

  44. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51.

    Article  PubMed  Google Scholar 

  45. Hermida RC, Ayala DE, Fernández JR, Mojón A, Smolensky MH. Hypertension: new perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk. Eur J Clin Investig. 2018;48:e12909.

    Article  Google Scholar 

  46. Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  47. Parati G, Dolan E, Ley L, Schumacher H. Impact of antihypertensive combination and monotreatments on blood pressure variability: assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database. J Hypertens. 2014;32(6):1326–33.

    Article  CAS  PubMed  Google Scholar 

  48. Parati G, Schumacher H, Bilo G, Mancia G. Evaluating 24-h antihypertensive efficacy by the smoothness index: a meta-analysis of an ambulatory blood pressure monitoring database. J Hypertens. 2010;28(11):2177–83.

    Article  CAS  PubMed  Google Scholar 

  49. Omboni S, Kario K, Bakris G, Parati G. Effect of antihypertensive treatment on 24-h blood pressure variability: pooled individual data analysis of ambulatory blood pressure monitoring studies based on olmesartan mono or combination treatment. J Hypertens. 2018;36(4):720–33.

    Article  CAS  PubMed  Google Scholar 

  50. Ogihara T, Saruta T, Rakugi H, Saito I, Shimamoto K, Matsuoka H, et al.; COLM Investigators. Combination therapy of hypertension in the elderly: a subgroup analysis of the Combination of OLMesartan and a calcium channel blocker or diuretic in Japanese elderly hypertensive patients trial. Hypertens Res. 2015;38(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  51. Ogihara T, Matsuzaki M, Matsuoka H, Shimamoto K, Shimada K, Rakugi H, et al.; COPE Trial Group. The combination therapy of hypertension to prevent cardiovascular events (COPE) trial: rationale and design. Hypertens Res. 2005;28(4):331–8. https://doi.org/10.1291/hypres.28.331. PMID: 16138563

    Article  CAS  PubMed  Google Scholar 

  52. Dahlöf B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al.; ASCOT Investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895–906. https://doi.org/10.1016/S0140-6736(05)67185-1. PMID: 16154016.

    Article  CAS  PubMed  Google Scholar 

  53. Zanchetti A, Bond MG, Hennig M, Neiss A, Mancia G, Dal Palù C, et al. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation. 2002;106:2422–7.

    Article  CAS  PubMed  Google Scholar 

  54. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Effects of β blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadhav, U.M., Kadam, S.A. (2022). Heart Rate Variability, Blood Pressure Variability: What Is Their Significance in Hypertension. In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics