Skip to main content

Cerebrovascular Disease in Asia: Causative Factors

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Abstract

Asia is home to a community of diverse ethnicities and races which contributes to more than half of the world’s population. Asia also shares a significant number in the statistics of worldwide mortality and morbidity, in particular, cerebrovascular disease. Cerebrovascular disease or stroke is a leading cause of mortality and long-term disability worldwide. Globally, there was a downward trend of stroke statistics since the 1990s, however, the collective stroke burden in terms of absolute number of people affected still increases. Stroke is an important health concern as about 60% of the world’s population is in Asia and with many countries regarded as developing economies. Notably, Asia has a higher burden related to stroke compared to coronary artery disease, while the opposite is observed in Western countries. Also, Asia has a higher burden of cerebrovascular risk factors with hypertension as the most prevalent cause of both ischemic and hemorrhagic strokes. Compared to Western countries, Asia has a higher incidence of hemorrhagic strokes and ischemic strokes related to cerebral small vessel disease such as lacunar infarcts, silent strokes, white matter hyperintensities, and cerebral microbleeds. Cases of large vessel occlusion and subarachnoid hemorrhages are variable.

Unique to Asia is the higher incidence of hemorrhagic strokes and AIS related to CSVD. Among the many known and established risk factors for stroke, HTN remains to be the most significant, though modifiable and preventable. Through time, chronic HTN leads to degeneration of the intracranial blood vessel wall leading to occlusion in cerebral ischemia or rupture in cerebral hemorrhages. This chapter highlights cerebrovascular disease in Asia and its causative factors by exploring different stroke subtypes and impact of hypertension. A discussion on blood pressure variability is provided as it is currently an emerging factor contributing to the development of strokes including the Asian population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL. Stroke in developing countries: can the epidemic be stopped and outcomes improved? Lancet Neurol. 2007;6(2):94–7.

    Article  PubMed  Google Scholar 

  2. Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007;6(2):182–7.

    Article  PubMed  Google Scholar 

  3. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;120:439–48.

    Article  CAS  PubMed  Google Scholar 

  4. Venketasubramanian N, Yoon BW, Pandian J, Navarro JC. Stroke epidemiology in south, east, and south-East Asia: a review. J Stroke. 2017;19:286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ueshima H, Sekikawa A, Miura K, Turin TC, Takashima N, Kita Y, et al. Cardiovascular disease and risk factors in Asia: a selected review. Circulation. 2008;118:2702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke. 2017;19:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akhtar N, Salam A, Kamran S, D’Souza A, Imam Y, Own A, et al. Pre-existing small vessel disease in patients with acute stroke from the Middle East, Southeast Asia, and Philippines. Transl Stroke Res. 2018;9:274–82.

    Article  PubMed  Google Scholar 

  8. Rennert RC, Wali AR, Steinberg JA, Santiago-Dieppa DR, Olson SE, Pannell JS, et al. Epidemiology, natural history, and clinical presentation of large vessel ischemic stroke. Clin Neurosurg. 2019;85:S4–8.

    Article  Google Scholar 

  9. Lakomkin N, Dhamoon M, Carroll K, Singh IP, Tuhrim S, Lee J, et al. Prevalence of large vessel occlusion in patients presenting with acute ischemic stroke: a 10-year systematic review of the literature. J Neurointerv Surg. 2019;11(3):241–5.

    Article  PubMed  Google Scholar 

  10. Rai AT, Seldon AE, Boo S, Link PS, Domico JR, Tarabishy AR, et al. A population-based incidence of acute large vessel occlusions and thrombectomy eligible patients indicates significant potential for growth of endovascular stroke therapy in the USA. J Neurointerv Surg. 2017;9:722–6.

    Article  PubMed  Google Scholar 

  11. Smith WS, Lev MH, English JD, Camargo EC, Chou M, Johnston SC, et al. Significance of large vessel intracranial occlusion causing acute ischemic stroke and tia. Stroke. 2009;40:3834–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bang OY. Considerations when subtyping ischemic stroke in Asian patients. J Clin Neurol. 2016;12(2):129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan KS, Navarro JC, Wong KS, Huang YN, Chiu HC, Poungvarin N, et al. Clinical profile, risk factors and aetiology of young ischaemic stroke patients in Asia: a prospective, multicentre, observational, hospital-based study in eight cities. Neurol Asia. 2014;19:117–27.

    Google Scholar 

  14. Ihle-Hansen H, Thommessen B, Wyller TB, Engedal K, Fure B. Risk factors for and incidence of subtypes of ischemic stroke. Funct Neurol. 2012;27:35–40.

    PubMed  PubMed Central  Google Scholar 

  15. Bejot Y, Caillier M, Ben Salem D, Couvreur G, Rouaud O, Osseby GV, et al. Ischaemic stroke subtypes and associated risk factors: a French population based study. J Neurol Neurosurg Psychiatry. 2008;79:1344–8.

    Article  CAS  PubMed  Google Scholar 

  16. Al Kasab S, Holmstedt CA, Jauch EC, Schrock J. Acute ischemic stroke due to large vessel occlusion. Emerg Med Rep. 2018;39:13–22.

    Google Scholar 

  17. Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. 2009;111(6):483–95.

    Article  CAS  PubMed  Google Scholar 

  18. De Silva DA, Brekenfeld C, Ebinger M, Christensen S, Barber PA, Butcher KS, et al. The benefits of intravenous thrombolysis relate to the site of baseline arterial occlusion in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. 2010;41:295–9.

    Article  PubMed  Google Scholar 

  19. Jansen O, Von Kummer R, Forsting M, Hacke W, Sartor K. Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. Am J Neuroradiol. 1995;16:1977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Front Neurol. 2017;8:651.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goyal M, Menon BK, Van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–31.

    Article  PubMed  Google Scholar 

  22. Tsang ACO, Yang IH, Orru E, Nguyen QA, Pamatmat RV, Medhi G, et al. Overview of endovascular thrombectomy accessibility gap for acute ischemic stroke in Asia: a multi-national survey. Int J Stroke. 2020;15:516–20.

    Article  PubMed  Google Scholar 

  23. Inoue M, Noda R, Yamaguchi S, Tamai Y, Miyahara M, Yanagisawa S, et al. Specific factors to predict large-vessel occlusion in acute stroke patients. J Stroke Cerebrovasc Dis. 2018;27:886–91.

    Article  PubMed  Google Scholar 

  24. Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018;38(12):2129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lima FO, Furie KL, Silva GS, Lev MH, Camargo ÉCS, Singhal AB, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41:2316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, et al. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol. 2013;74:241–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed N, Wahlgren N, Brainin M, Castillo J, Ford GA, Kaste M, et al. Relationship of blood pressure, antihypertensive therapy, and outcome in ischemic stroke treated with intravenous thrombolysis: retrospective analysis from safe implementation of thrombolysis in stroke-international stroke thrombolysis register (SITS-ISTR). Stroke. 2009;40:2442–9.

    Article  PubMed  Google Scholar 

  28. Leonardi-Bee J, Bath PMW, Phillips SJ, Sandercock PAG. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33:1315–20.

    Article  PubMed  Google Scholar 

  29. Strandgaard S. Autoregulation of cerebral circulation in hypertension. Acta Neurol Scand Suppl. 1978;57:1–82.

    Google Scholar 

  30. Muller M, Van Der Graaf Y, Visseren FL, Mali WPTM, Geerlings MI. Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol. 2012;71:825–33.

    Article  PubMed  Google Scholar 

  31. Coyle P, Heistad DD. Development of collaterals in the cerebral circulation. Blood Vessels. 1991;28(1-3):183–9.

    CAS  PubMed  Google Scholar 

  32. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 2011;10(10):909–21.

    Article  PubMed  Google Scholar 

  33. Zhang H, Prabhakar P, Sealock R, Faber JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;10(10):689–701.

    Article  Google Scholar 

  35. Petty GW, Brown RD, Whisnant JP, Sicks JRD, O’Fallon WM, Wiebers DO. Ischemic stroke subtypes: a population-based study of functional outcome, survival, and recurrence. Stroke. 2000;31:1062–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CLH. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry. 2017;88:669–74.

    Article  PubMed  Google Scholar 

  37. Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-induced cerebral small vessel disease leading to cognitive impairment. Chin Med J (Engl). 2018;131:615–9.

    Article  Google Scholar 

  38. Uiterwijk R, Staals J, Huijts M, De Leeuw PW, Kroon AA, Van Oostenbrugge RJ. MRI progression of cerebral small vessel disease and cognitive decline in patients with hypertension. J Hypertens. 2017;35:1263–70.

    Article  CAS  PubMed  Google Scholar 

  39. Rouhl RPW, Mertens AECS, Van Oostenbrugge RJ, Damoiseaux JGMC, Debrus-Palmans LL, Henskens LHG, et al. Angiogenic T-cells and putative endothelial progenitor cells in hypertension-related cerebral small vessel disease. Stroke. 2012;43:256–8.

    Article  PubMed  Google Scholar 

  40. Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases. Stroke. 2020;51:47–53.

    Article  PubMed  Google Scholar 

  41. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.

    Article  CAS  PubMed  Google Scholar 

  42. Flaherty ML, Woo D, Haverbusch M, Sekar P, Khoury J, Sauerbeck L, et al. Racial variations in location and risk of intracerebral hemorrhage. Stroke. 2005;36:934–7.

    Article  PubMed  Google Scholar 

  43. Grysiewicz RA, Thomas K, Pandey DK. Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol Clin. 2008;26:871–95.

    Article  PubMed  Google Scholar 

  44. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.

    Article  PubMed  Google Scholar 

  45. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480687 adults. Circulation. 2017;135:759–71.

    Article  PubMed  Google Scholar 

  46. Toyoda K. Epidemiology and registry studies of stroke in Japan. J Stroke. 2013;15:21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mehndiratta MM, Khan M, Mehndiratta P, Wasay M. Stroke in Asia: geographical variations and temporal trends. J Neurol Neurosurg Psychiatry. 2014;85:1308–12.

    Article  PubMed  Google Scholar 

  48. Krishnamurthi RRV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1:e259–81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krishnamurthi RV, Ikeda T, Feigin VL. Global, regional and country-specific burden of Ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017. Neuroepidemiology. 2020;54:171–9.

    Article  PubMed  Google Scholar 

  50. Aguilar MI, Brott TG. Update in intracerebral hemorrhage. Neurohospitalist. 2011;1:148–59.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosand J, Hylek EM, O’Donnell HC, Greenberg SM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology. 2000;55:947–51.

    Article  CAS  PubMed  Google Scholar 

  52. Safatli DA, Günther A, Schlattmann P, Schwarz F, Kalff R, Ewald C. Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg Neurol Int. 2016;7:S510–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Poungvarin N, Suwanwela NC, Venketasubramanian N, Wong LKS, Navarro JC, Bitanga E, et al. Grave prognosis on spontaneous intracerebral haemorrhage: GP on stage score. J Med Assoc Thail. 2006;89:84–93.

    Google Scholar 

  54. Chen HS, Hsieh CF, Chau TT, Yang CD, Chen YW. Risk factors of in-hospital mortality of intracerebral hemorrhage and comparison of ICH scores in a Taiwanese population. Eur Neurol. 2011;66:59–63.

    Article  PubMed  Google Scholar 

  55. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  56. McNaughton H, Feigin V, Kerse N, Barber PA, Weatherall M, Bennett D, et al. Ethnicity and functional outcome after stroke. Stroke. 2011;42:960–4.

    Article  PubMed  Google Scholar 

  57. Zia E, Hedblad B, Pessah-Rasmussen H, Berglund G, Janzon L, Engström G. Blood pressure in relation to the incidence of cerebral infarction and intracerebral hemorrhage—hypertensive hemorrhage: debated nomenclature is still relevant. Stroke. 2007;38:2681–5.

    Article  PubMed  Google Scholar 

  58. Lawes C. Blood pressure indices and cardiovascular disease in the Asia Pacific region: a pooled analysis. Hypertension. 2003;42:69–75.

    Article  PubMed  CAS  Google Scholar 

  59. O’Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388:761–75.

    Article  PubMed  Google Scholar 

  60. Kubo M, Kiyohara Y, Kato I, Tanizaki Y, Arima H, Tanaka K, et al. Trends in the incidence, mortality, and survival rate of cardiovascular disease in a Japanese community: the Hisayama study. Stroke. 2003;34:2349–54.

    Article  PubMed  Google Scholar 

  61. Etminan N, Chang HS, Hackenberg K, De Rooij NK, Vergouwen MDI, Rinkel GJE, et al. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 2019;76:588–97.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hughes JD, Bond KM, Mekary RA, Dewan MC, Rattani A, Baticulon R, et al. Estimating the global incidence of aneurysmal subarachnoid hemorrhage: a systematic review for central nervous system vascular lesions and meta-analysis of ruptured aneurysms. World Neurosurg. 2018;115:430–447.e7.

    Article  PubMed  Google Scholar 

  63. Feigin V, Parag V, Lawes CMM, Rodgers A, Suh I, Woodward M, et al. Smoking and elevated blood pressure are the most important risk factors for subarachnoid hemorrhage in the Asia-Pacific region: an overview of 26 cohorts involving 306620 participants. Stroke. 2005;36:1360–5.

    Article  PubMed  Google Scholar 

  64. Austin G, Fisher S, Dickson D, Anderson D, Richardson S. The significance of the extracellular matrix in intracranial aneurysms. Ann Clin Lab Sci. 1993;23:97–105.

    CAS  PubMed  Google Scholar 

  65. Wiebers DO, Piepgras DG, Meyer FB, Kallmes DF, Meissner I, Atkinson JLD, et al. Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. Neuroradiol J. 2006;19:504–15.

    Article  PubMed  Google Scholar 

  66. Wiebers DO. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  PubMed  Google Scholar 

  67. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366:2474–82.

    Article  PubMed  Google Scholar 

  68. Lindbohm JV, Kaprio J, Jousilahti P, Salomaa V, Korja M. Risk factors of sudden death from subarachnoid hemorrhage. Stroke. 2017;48:2399–404.

    Article  PubMed  Google Scholar 

  69. Mackey J, Khoury JC, Alwell K, Moomaw CJ, Kissela BM, Flaherty ML, et al. Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population. Neurology. 2016;87:2192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. McGurgan IJ, Clarke R, Lacey B, Kong XL, Chen Z, Chen Y, et al. Blood pressure and risk of subarachnoid hemorrhage in China. Stroke. 2019;50:38–44.

    Article  Google Scholar 

  71. Diringer MN, Bleck TP, Hemphill JC, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.

    Article  PubMed  Google Scholar 

  72. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    Article  PubMed  Google Scholar 

  73. Rosei EA, Chiarini G, Rizzoni D. How important is blood pressure variability? Eur Heart J Suppl. 2020;22:E1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang T, Wang X, Wen C, Zhou F, Gao S, Zhang X, et al. Effect of short-term blood pressure variability on functional outcome after intra-arterial treatment in acute stroke patients with large-vessel occlusion. BMC Neurol. 2019;19(1):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung JW, Kim N, Kang J, Park SH, Kim WJ, Ko Y, et al. Blood pressure variability and the development of early neurological deterioration following acute ischemic stroke. J Hypertens. 2015;33:2099–106.

    Article  CAS  PubMed  Google Scholar 

  76. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375:1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  78. Oishi E, Ohara T, Sakata S, Fukuhara M, Hata J, Yoshida D, et al. Day-to-day blood pressure variability and risk of dementia in a general Japanese elderly population: the Hisayama study. Circulation. 2017;136:516–25.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ma Y, Song A, Viswanathan A, Blacker D, Vernooij MW, Hofman A, et al. Blood pressure variability and cerebral small vessel disease: a systematic review and meta-analysis of population-based cohorts. Stroke. 2020;51:82–9.

    Article  PubMed  Google Scholar 

  80. Liu Z, Zhao Y, Zhang H, Chai Q, Cui Y, Diao Y, et al. Excessive variability in systolic blood pressure that is self-measured at home exacerbates the progression of brain white matter lesions and cognitive impairment in the oldest old. Hypertens Res. 2016;39:245–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Bimbo F. Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diaz, A.B.F., Belen, A.A., Tenorio-Javier, A.M.J., Juangco, D.N.A. (2022). Cerebrovascular Disease in Asia: Causative Factors. In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics