Skip to main content

Pathophysiology and Mechanisms of Hypertension (Asian Context)

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 782 Accesses

Abstract

Essential hypertension is a heritable disease with a complex genetic trait caused by multiple susceptibility genes the effects of which are modulated by gene–environment and gene–gene interactions [1]. These genetic determinants involve multiple genes that make it challenging to study blood pressure BP) variations in general population [2]. BP may be dependent on a genetic pattern of many loci with influence at variance according to race [3], gender [4], age, or lifestyle [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh M, Singh AK, Pandey S, Chandra S, Singh KA, Gambhir IS. Molecular genetics of essential hypertension. Clin Exp Hypertens. 2016;38(3):268–77.

    Article  CAS  PubMed  Google Scholar 

  2. Doris PA. Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension. 2002;39:323–31.

    Article  CAS  PubMed  Google Scholar 

  3. Luft FC, Miller JZ, Grim CE, Fineberg NS, Christian JC, Daugherty SA, et al. Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension. 1991;17:1102–8.

    Article  Google Scholar 

  4. Higaki J, Baba S, Katsuya T, Sato N, Ishikawa K, Mannami T, et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation. 2000;101:2060–5.

    Article  CAS  PubMed  Google Scholar 

  5. Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet. 2003;361:1629–41.

    Article  PubMed  Google Scholar 

  6. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    Article  CAS  PubMed  Google Scholar 

  7. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    Article  CAS  PubMed  Google Scholar 

  8. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest. 1997;99:1786–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation. 1998;97:1766–72.

    Article  PubMed  Google Scholar 

  10. Brand E, Chatelain N, Mulatero P, Fery I, Curnow K, Jeunemaitre X, et al. Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension. 1998;32:198–204.

    Article  CAS  PubMed  Google Scholar 

  11. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  CAS  PubMed  Google Scholar 

  12. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haximer SP, Watson N, Linder ME, Blumer KJ, Hepler JR. RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci U S A. 1997;94:14389–93.

    Article  Google Scholar 

  14. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rheee M, Peng N, et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deeficient mice. J Clin Invest. 2003;111:445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lander E, Kruglyak L. Genetic dissection of complex traits. Nat Genet. 1995;11:241–7.

    Article  CAS  PubMed  Google Scholar 

  16. Patel RS, Masi S, Taddei S. Understanding the role of genetics in hypertension. Euro Heart J. 2017;38:2309–12.

    Article  Google Scholar 

  17. Ehret GB, Caulfield MJ. Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J. 2013;34:951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dominiczak A, Delles C, Padmanabhan S. Genomics and precision medicine for clinicians and scientists in hypertension. Hypertension. 2017;69:e10–3.

    CAS  PubMed  Google Scholar 

  19. Wang J, Gong L, Tan Y, Hui R, Wang Y. Hypertensive epigenetics: from DNA methylation to microRNAs. J Hum Hypertens. 2015;29:575–82.

    Article  CAS  PubMed  Google Scholar 

  20. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wain LV, Vaez A, Jansen R, Joehanes R, van der Most PJ, Mesut Erzurumluoglu A, et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension. 2017;70:e4–e19.

    Article  CAS  Google Scholar 

  23. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.

    Article  CAS  PubMed  Google Scholar 

  24. Evangelou E, Warren H R, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over one million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018;50:1412–25.

    Google Scholar 

  25. Douma S, Petidis K, Doumas M, Papaefthimiou P, Triantafyllou A, Kartali N, et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet. 2008;371(9628):1921–6.

    Article  CAS  PubMed  Google Scholar 

  26. Brown JM, Siddiqui M, Calhoun DA, Carey RM, Hopkins PN, Williams GH, et al. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann Intern Med. 2020;173:10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliveira-Paula GH. Polymorphisms in VEGFA gene affect the antihypertensive responses to enalapril. Eur J Clin Pharmacol. 2015;71:949–57.

    Article  CAS  PubMed  Google Scholar 

  29. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JMD, Guimaraes GV. Haemodynamic, metabolic and neuro-humoral abnormalities in young normotensive women at high familial risk for hypertension. J Hum Hypertens. 2010;24:814–22.

    Article  CAS  PubMed  Google Scholar 

  30. Bond V Jr, Franks BD, Tearney RJ, Wood B, Melendez MA, Johnson L, et al. Exercise blood pressure response and skeletal muscle vasodilator capacity in normotensives with positive and negative family history of hypertension. J Hypertens. 1994;12:285–90.

    Article  PubMed  Google Scholar 

  31. Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  32. Fisher JP, Paton JFR. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26:463–75.

    Article  CAS  PubMed  Google Scholar 

  33. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens. 2004;17:217–22.

    Article  PubMed  Google Scholar 

  34. Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension: review of 122 cases. Lancet. 1953;1:403–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sica DA. Centrally acting antihypertensive agents: an update. J Clin Hypertens. 2007;9:399–405.

    Article  CAS  Google Scholar 

  36. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14.

    Article  CAS  PubMed  Google Scholar 

  37. Grassi G, Seravalle G, Bertinieri G, Turri C, Dell’Oro R, Stella M, et al. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens. 2000;18:587–93.

    Article  CAS  PubMed  Google Scholar 

  38. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grassi G, Cattaneo BM, Lanfranchi SG, Mancia G. Baroflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    Article  CAS  PubMed  Google Scholar 

  40. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell-Oro R, Mancia G. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57:846–51.

    Article  CAS  PubMed  Google Scholar 

  41. Kaur J, Young BE, Fadel PJ. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int J Mol Sci. 2017;18:1682–94.

    Article  PubMed Central  CAS  Google Scholar 

  42. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertens. 2010;23:1052–60.

    Article  PubMed  Google Scholar 

  43. Calhoun DA, Booth JN, Oparil S, Irvin MR, Shimbo D, Lackland DT, Howard G, et al. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, population-based cohort. Hypertension. 2014;63:451–8.

    Article  CAS  PubMed  Google Scholar 

  44. Prevalence and clinical characteristics of patients with true resistant hypertension in central and Eastern Europe: data from the BP-CARE study. J Hypertens. 2013;10:2018–24.

    Google Scholar 

  45. Mercado-Asis LB, Castillo RR. Clinical presentation, diagnosis, and management of primary aldosteronism and pheochromocytoma. Hypertens J. 2019;5:5.

    Article  Google Scholar 

  46. Mercado-Asis LB, Siao RM, Amba NF. Evolving clinical presentation and assessment of pheochromocytoma: a review. J Med Univ Santo Tomas. 2017;1:5–23.

    Article  Google Scholar 

  47. Eisenhofer G, Lenders JW, Timmers HJLM, Mannelli M, Grebe SK, Hofbauer LC, et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem. 2011;57:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pacak K. Pheochromocytoma: a catecholamine and oxidative stress disorder. Endocr Regul. 2011;45:65–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Berkel A, Lenders J, Timmers HJLM. Biochemical diagnosis of phaeochromocytoma and paraganglioma. Eur J Endocrinol. 2014;170:R109–19.

    Article  PubMed  CAS  Google Scholar 

  50. Pussard E, Chaouch A, Said T. Radioimmunoassay of free plasma metanephrines for the diagnosis of catecholamine producing tumors. Clin Chem Lab Med. 2014;52:437–44.

    Article  CAS  PubMed  Google Scholar 

  51. Osinga TE, van den Eijnden HA, Kema IP, Kerstens MN, Dullaart RPF, de Jong WHA, et al. Unilateral and bilateral adrenalectomy for pheochromocytoma requires adjustment of urinary and plasma meetanephrine reference ranges. J Clin Eendocrinol Metab. 2013;98:1976–083.

    Google Scholar 

  52. Zhou GW, Wei Y, Chen X, Jiang XH, Li XY, Ning G, et al. Diagnosis and surgical treatment of multiple endocrine neoplasia. Chin Med J. 2009;122:1495–500.

    PubMed  Google Scholar 

  53. Mercado-Asis LB, Tingcungco AG, Bolong DT, Lopez RA, Caguioa EV, Yamamoto ME, et al. Diagnosis of small adrenal pheochromocytoma by adrenal venous sampling with glucagon stimulation test. Int J Endocrinol Metab. 2011;9:323–9.

    Article  CAS  Google Scholar 

  54. Malong CLP, Tanchee-Ngo MJ, Torres-Salvador P, Pacak K, Mercado-Asis LB. Removal of dominant adrenal lateralized by glucagon-stimulated adrenal venous sampling alleviates hypertension in bilateral pheochromocytoma. J Life Sci. 2013;7:586–91.

    CAS  Google Scholar 

  55. Gomez MF, Gan FR, Mendoza E, Mercado LB. Systemic hormonal unloading in unilateral adrenalectomy in a patient with bilateral adrenal hyperplasia: a case report. J Med Univ Santo Tomas. 2019;3:303–8.

    Article  Google Scholar 

  56. Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int. 1986;30:437–52.

    Article  CAS  PubMed  Google Scholar 

  57. Mark AL. The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens Suppl. 1996;14:S159–65.

    CAS  PubMed  Google Scholar 

  58. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724–8.

    Article  CAS  PubMed  Google Scholar 

  59. Esler M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension. 2014;63:e25–32.

    Article  PubMed  Google Scholar 

  60. Sinski M, Lewandowski J, Przybylski J, Zalewski P, Symonides B, Abramczyk P, et al. Deactivation of carotid body chemoreceptors by hyperoxia decreases blood pressure in hypertensive patients. Hypertens Res. 2014;37:858–62.

    Article  CAS  PubMed  Google Scholar 

  61. Cowleey AW Jr. Long-teerm control of arterial blood pressure. Physiol Rev. 1992;72:231–300.

    Article  Google Scholar 

  62. Sinski M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A, Gaciong Z. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res. 2012;35:487–91.

    Article  CAS  PubMed  Google Scholar 

  63. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hyperrtension. 2009;54:690–7.

    Article  CAS  Google Scholar 

  64. Bang SK, Ryu Y, Chang S, Im CK, Bae JH, Gwak YS, et al. Attenuation of hypertension by C-fiber stimulation of the human median nerve and the concept-based novel device. Sci Rep. 2018;8:14967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. de Jong MR, Adiyaman A, Gal P, Smit JJJ, Delnoy PPHM, Heeg J, van Hasselt BAAM, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–14.

    Article  PubMed  CAS  Google Scholar 

  66. Maver J, Struci M, Accetto R. Autonomic nervous system in normotensive subjects with a family history of hypertension. Clin Auton Res. 2004;14:369–75.

    Article  PubMed  Google Scholar 

  67. Elayan HH, Sun P, Milic M, Liu F, Bao X, Ziegler MG. Cardiovascular responses to electrical stimulation of sympathetic nerves in the pithed mouse. Auton Neurosci. 2008;30:49–52.

    Article  CAS  Google Scholar 

  68. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Munoz-Durango N, Fuentes CA, Castillo AE, Gonzalees-Gomeez LM, Veecchiola A, Fardella CE, Kaleergis AM. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int J Mol. 2016;17:797–814.

    Article  CAS  Google Scholar 

  70. Ren L, Lu X, Danser AHJ. Revisiting the brain renin-angiotensin system—focus on novel therapies. Curr Hypertens Rep. 2019;21:28–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nehme A, Zouein FA, Zayeri ZD, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6:14–31.

    Article  CAS  PubMed Central  Google Scholar 

  72. Sztechman D, Czarzasta K, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Zera T. Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries. J Physiol Pharmacol. 2018;69.

    Google Scholar 

  73. Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316:H958–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Reen L, Lu X, Danser AHJ. Revisiting the brain renin-angiotensin system—focus on novel therapies. Curr Hypertens Rep. 2019;21:28–35.

    Article  CAS  Google Scholar 

  75. Hamlyn JM, Linde CI, Gao J, Huang BS, Golovina VA, Balustein MP, et al. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: a new axis in long term blood pressure control. PLoS One. 2014;9:e108916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lu J, Wang H, Ahmad M, Keshtkar-Jahromi M, Blaustein MP, Hamlyn JM, Leeneen FHH. Central and peripheral slow-pressor mechanisms contributing to angiotensin II-salt hypertension in rats. Cardiovasc Res. 2018;114:233–46.

    Article  CAS  PubMed  Google Scholar 

  77. Leenen FH. The central role of the brain aldosterone “ouabain” pathway in salt-sensitive hypertension. Biochem Biophys Acta. 2010;1802:1132–9.

    CAS  PubMed  Google Scholar 

  78. Huang BS, Ahmadi M, White RA, Leenen FH. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone “ouabain” pathway. Am J Physiol Heart Circ Physiol. 2010;299:H422–30.

    Article  CAS  PubMed  Google Scholar 

  79. Osborn JW, Olson DM, Guzman P, Toney GM, Fink GD. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil. Physiol Rep. 2014;2:e00245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang Y, Chen L, Wier WG, Zhang J. Intravital Forster resonance energy transfer imaging reveals elevated [Ca2+], and enhanced sympathetic tone in femoral arteries of angiotensin II-infused hypertensive biosensor mice. J Physiol. 2013;591:5321–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gonzales-Villalobos RA, Billet S, Kim C, Satou R, Fuchs S, Berrnstein KE, et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J A Soc Nephrol. 2011;22:449–59.

    Article  CAS  Google Scholar 

  82. Bernstein KEE. Two ACEs and a heart. Nature. 2002;417:799–802.

    Article  CAS  PubMed  Google Scholar 

  83. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res. 2005;1060:108–17.

    Article  CAS  PubMed  Google Scholar 

  84. Bodineau L, Frugiere A, Marc Y, Inguimbert N, Fassot C, Balavoine F, Roques B, Llorens-Cortes C. Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension. 2008;51:1318–25.

    Article  CAS  PubMed  Google Scholar 

  85. Raina H, Zhang Q, Rhee AY, Pallone TL, Wier WG. Sympathetic nerves and the endothelium influence the vasoconstrictor effect of low concentrations of ouabain in pressurized small arteries. Am J Physiol Heart Circ Physiol. 2010;298:H2093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hamlyn JM, Laredo J, Shah JR, Lu ZR, Hamilton BP. 11-hydroxylation in the biosynthesis of endogenous ouabain: multiple implications. Ann N Y Acad Sci. 2003;986:685–93.

    Article  CAS  PubMed  Google Scholar 

  87. Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Rev. 2001;37:3–12.

    Article  CAS  PubMed  Google Scholar 

  88. Asano N, Ogura T, Mimura Y, Kishida M, Kataoka H, Otsuka F, et al. Renal AT1 receptor: autographic localization and quantification in rat. Res Commun Mol Pathol Pharmacol. 1998;100(2):161–70.

    CAS  PubMed  Google Scholar 

  89. Vinson GP. Glomerulosa function and aldosterone synthesis in the rat. Mol Cell Endocrinol. 2004;217:59–65.

    Article  CAS  PubMed  Google Scholar 

  90. Wysocki J, Ye M, Batlle D. Plasma and kidney angiotensin peptides: importance of the aminopeptidase A/angiotensin III axis. Am J Hypertens. 2015;28:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye P, Kenyon CJ, MacKenzie SM, Seckl JR, Fraser R, et al. Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensin II. Endocrinology. 2003;144:3321–8.

    Article  CAS  PubMed  Google Scholar 

  92. Carey RM, Vaughan ED Jr, Peach MJ, Ayers CR. Activity of (des-Aspartyl1)-angiotensin II and angiotensin II in man. Differences in blood pressure and adrenocortical response during normal and low sodium intake. J Clin Invest. 1978;61:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, et al. Intrarenal angiotensin III is the predominant agonist for proximal tubule AT2 receptors. Hypertension. 2012;60:387–95.

    Article  CAS  PubMed  Google Scholar 

  94. Padia SH, Howell NL, Siragy HM, Carey RM. Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension. 2006;47:537–44.

    Article  CAS  PubMed  Google Scholar 

  95. Kopf PG, Park S, Herrnreiter A, Krause C, Roques BP, Campbell WB. Obligatory metabolism of angiotensin II to angiotensin III for zona glomerulosa cell-mediated relaxations of bovine adrenal cortical arteries. Endocrinology. 2018;159:238–47.

    Article  CAS  PubMed  Google Scholar 

  96. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology, XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.

    PubMed  Google Scholar 

  97. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carey RM. Update on angiotensin AT2 receptors. Curr Opin Nephrol Hypertens. 2017;26:91–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Siragy HM, Carey RM. Angiotensin type 2 receptors: potential importance in the regulation of blood pressure. Curr Opin Nephrol Hypertens. 2001;10:99–103.

    Article  CAS  PubMed  Google Scholar 

  100. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018;71(19):e127–248.

    Article  PubMed  Google Scholar 

  101. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burner M, Clement DL, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    Article  PubMed  Google Scholar 

  102. Grebla RC, Rodriguez CJ, Borrell LN, Pickering TG. Prevalence and determinants of isolated systolic hypertension among young adults: the 1999–2004 US National Health and Nutrition Examination Survey. J Hypertens. 2010;28(1):15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yano Y, Stamler J, Garside DB, Daviglus ML, Franklin SS, Carnethon MR, et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry Study. J Am Coll Cardiol. 2015;65(4):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  104. McEniery CM, Franklin SS, Cockcroft JR, Wilkinson IB. Isolated systolic hypertension in young people is not spurious and should be treated: pro side of the argument. Hypertension. 2016;68(2):269–75.

    Article  CAS  PubMed  Google Scholar 

  105. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension. 1995;25(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  106. Franklin SS. Elderly hypertensives: how are they different? J Clin Hypertens. 2012;14(11):779–86.

    Article  Google Scholar 

  107. Palatini P, Rosei EA, Avolio A, Bilo G, Casiglia E, Ghiadoni L, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European Society of Hypertension. J Hypertens. 2018;36(6):1222–36.

    Article  CAS  PubMed  Google Scholar 

  108. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42(9):1235–481.

    Article  PubMed  Google Scholar 

  109. Avolio AP, Deng FQ, Li WQ, Luo YF, Huang ZD, Xing LF, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985;71(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  110. Avolio A. Ageing and wave reflection. J Hypertens Suppl. 1992;10(6):S83–6.

    CAS  PubMed  Google Scholar 

  111. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL, Neutel J, Kwerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108(13):1592–8.

    Article  PubMed  Google Scholar 

  112. Wallace SM, Yasmin, McEniery CM, Maki-Petaja KM, Booth AD, Cockcroft JR, et al. Isolated systolic hypertension is characterized by increased aortic stiffness and endothelial dysfunction. Hypertension. 2007;50(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  113. Franklin SS, Barboza MG, Pio JR, Wong ND. Blood pressure categories, hypertensive subtypes, and the metabolic syndrome. J Hypertens. 2006;24(10):2009–16.

    Article  CAS  PubMed  Google Scholar 

  114. Mph CB, Goel S, Messerli FH, Bavishi C, Goel S, Messerli FH. Isolated systolic hypertension: an update after SPRINT. Am J Med. 2010;129(12):1251–8.

    Google Scholar 

  115. Kocemba J, Kawecka-Jaszcz K, Gryglewska B, Grodzicki T. Isolated systolic hypertension: pathophysiology, consequences and therapeutic benefits. J Hum Hypertens. 1998;12:621–6.

    Article  CAS  PubMed  Google Scholar 

  116. Kario K, Chen CH, Park S, Park CG, Hoshide S, Cheng HM, et al. Consensus document on improving hypertension management in Asian patients, taking into account Asian characteristics. Hypertension. 2018;71(3):375–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilani B. Mercado-Asis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mercado-Asis, L.B. (2022). Pathophysiology and Mechanisms of Hypertension (Asian Context). In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics