Skip to main content

Mechanical Interventional Therapies for Hypertension: Present Status and Future Prospects

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Abstract

Hypertension is a global public health concern and a major risk factor for cardiovascular mortality and morbidity, particularly in Asia, and is expected to result in an increasing socioeconomic burden. Non-adherence to lifestyle modifications and anti-hypertensive medications, as well as resistant hypertension are particular challenges for the clinician in the management of hypertension. Renal sympathetic nerves and sympathetic drive play a major role in the pathophysiology of hypertension, and mechanical intervention therapies target these pathways to reduce blood pressure. This chapter will briefly examine the history and origins of mechanical intervention therapies, study its present state, and look at some of its future directions, with particular attention to catheter-based renal denervation therapies, which have been the most extensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317(2):165–82.

    Article  PubMed  Google Scholar 

  2. Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370(9587):591–603.

    Article  CAS  PubMed  Google Scholar 

  3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.

    Article  PubMed  Google Scholar 

  4. Jin CN, Yu CM, Sun JP, Fang F, Wen YN, Liu M, et al. The healthcare burden of hypertension in asia. Heart Asia. 2013;5(1):238–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malhotra R, Chan A, Malhotra C, Østbye T. Prevalence, awareness, treatment and control of hypertension in the elderly population of Singapore. Hypertens Res. 2010;33(12):1223–31.

    Article  PubMed  Google Scholar 

  6. Kim KI, Chang HJ, Cho YS, Youn TJ, Chung WY, Chae IH, et al. Current status and characteristics of hypertension control in community resident elderly Korean people: data from a Korean longitudinal study on health and aging (Klosha study). Hypertens Res. 2008;31(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  7. Group HS. Prevalence, awareness, treatment and control of hypertension among the elderly in Bangladesh and India: a multicentre study. Bull World Health Organ. 2001;79(6):490–500.

    Google Scholar 

  8. Lu FH, Tang SJ, Wu JS, Yang YC, Chang CJ. Hypertension in elderly persons: its prevalence and associated cardiovascular risk factors in Tainan City, southern Taiwan. J Gerontol A Biol Sci Med Sci. 2000;55(8):M463–8.

    Article  CAS  PubMed  Google Scholar 

  9. Park JB, Kario K, Wang JG. Systolic hypertension: an increasing clinical challenge in Asia. Hypertens Res. 2015;38(4):227–36.

    Article  PubMed  Google Scholar 

  10. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  11. Gf D. Neural control of the kidney: past, present, and future. Hypertension. 2003;41(3 Pt 2):621–4.

    Google Scholar 

  12. Dibona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.

    Article  CAS  PubMed  Google Scholar 

  13. Gewirtz JR, Bisognano JD. Catheter-based renal sympathetic denervation: a targeted approach to resistant hypertension. Cardiol J. 2011;18(1):97–102.

    PubMed  Google Scholar 

  14. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens. 2004;17(3):217–22.

    Article  PubMed  Google Scholar 

  15. Schlaich MP, Sobotka PA, Krum H, Whitbourn R, Walton A, Esler MD. Renal denervation As a therapeutic approach for hypertension: novel implications for an old concept. Hypertension. 2009;54(6):1195–201.

    Article  CAS  PubMed  Google Scholar 

  16. Dibona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    Article  CAS  PubMed  Google Scholar 

  17. Smithvick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.

    Article  Google Scholar 

  18. Longland CJ, Gibb WE. Sympathectomy in the treatment of benign and malignant hypertension; a review of 76 patients. Br J Surg. 1954;41(168):382–92.

    Article  CAS  PubMed  Google Scholar 

  19. Smithvick RH. Hypertensive vascular disease; results of and indications for Splanchnicectomy. J Chronic Dis. 1955;1(5):477–96.

    Article  Google Scholar 

  20. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol. 2010;105(4):570–6.

    Article  PubMed  Google Scholar 

  21. Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension; review of 122 cases. Lancet. 1953;1(6757):403–8.

    Article  CAS  PubMed  Google Scholar 

  22. Evelyn KA, Singh MM, Chapman WP, Perera GA, Thaler H. Effect of thoracolumbar sympathectomy on the clinical course of primary (essential) hypertension. A ten-year study of 100 sympathectomized patients compared with individually matched, symptomatically treated control subjects. Am J Med. 1960;28:188–221.

    Article  CAS  PubMed  Google Scholar 

  23. Castro Torres Y, Katholi RE. Renal denervation for treating resistant hypertension: current evidence and future insights from a global perspective. Int J Hypertens. 2013;2013:513214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lobo MD, Sobotka PA, Pathak A. Interventional procedures and future drug therapy for hypertension. Eur Heart J. 2017;38(15):1101–11.

    PubMed  Google Scholar 

  25. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  CAS  PubMed  Google Scholar 

  26. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  PubMed  Google Scholar 

  27. Rocha-Singh KJ. Medtronic Ardian Symplicityâ„¢ renal denervation devices. In: Heuser R, Schlaich M, Sievert H, Editors. Renal Denervation. London: Springer; 2015.

    Google Scholar 

  28. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity Htn-2 trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    Article  PubMed  Google Scholar 

  29. Persu A, Jin Y, Azizi M, Baelen M, Völz S, Elvan A, et al. Blood pressure changes after renal denervation at 10 European expert centers. J Hum Hypertens. 2014;28(3):150–6.

    Article  PubMed  Google Scholar 

  30. Persu A, Renkin J, Thijs L, Staessen JA. Renal denervation: ultima ratio or standard in treatment-resistant hypertension. Hypertension. 2012;60(3):596–606.

    Article  CAS  PubMed  Google Scholar 

  31. Bhatt DL, Kandzari DE, O’neill WW, D’agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  32. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the Symplicity Htn-3 trial. Eur Heart J. 2015;36(4):219–27.

    Article  PubMed  Google Scholar 

  33. Kandzari DE, Kario K, Mahfoud F, Cohen SA, Pilcher G, Pocock S, et al. The Spyral Htn global clinical trial program: rationale and design for studies of renal denervation in the absence (Spyral Htn off-med) and presence (Spyral Htn on-med) of antihypertensive medications. Am Heart J. 2016;171(1):82–91.

    Article  PubMed  Google Scholar 

  34. Esler M. Renal denervation for hypertension: observations and predictions of a founder. Eur Heart J. 2014;35(18):1178–85.

    Article  PubMed  Google Scholar 

  35. Lobo MD, De Belder MA, Cleveland T, Collier D, Dasgupta I, Deanfield J, et al. Joint UK Societies’ 2014 consensus statement on renal denervation for resistant hypertension. Heart. 2015;101(1):10–6.

    Article  PubMed  Google Scholar 

  36. Mahfoud F, Böhm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S, et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J. 2015;36(33):2219–27.

    Article  PubMed  Google Scholar 

  37. Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the global symplicity registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65(4):766–74.

    Article  PubMed  CAS  Google Scholar 

  38. Sharp AS, Davies JE, Lobo MD, Bent CL, Mark PB, Burchell AE, et al. Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol. 2016;105(6):544–52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kapil V, Jain AK, Lobo MD. Renal sympathetic denervation - a review of applications in current practice. Interv Cardiol. 2014;9(1):54–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kiuchi MG, Maia GL, De Queiroz Carreira MA, Kiuchi T, Chen S, Andrea BR, et al. Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J. 2013;34(28):2114–21.

    Article  PubMed  Google Scholar 

  41. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the Enlightn I trial. Eur Heart J. 2013;34(28):2132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pathak A, Coleman L, Roth A, Stanley J, Bailey L, Markham P, et al. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the Arterial Wall and reduces sympathetic nerve activity. EuroIntervention. 2015;11(4):477–84.

    Article  PubMed  Google Scholar 

  43. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (Spyral Htn-off med pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020;395(10234):1444–51.

    Article  PubMed  Google Scholar 

  44. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the Spyral Htn-on med proof-of-concept randomised trial. Lancet. 2018;391(10137):2346–55.

    Article  PubMed  Google Scholar 

  45. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Lobo MD, et al. Six-month results of treatment-blinded medication titration for hypertension control following randomization to endovascular ultrasound renal denervation or a sham procedure in the Radiance-Htn solo trial. Circulation. 2019;139(22):2542–53.

    Article  CAS  Google Scholar 

  46. Mauri L, Kario K, Basile J, Daemen J, Davies J, Kirtane AJ, et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the radiance-Htn and require clinical study designs. Am Heart J. 2018;195:115–29.

    Article  PubMed  Google Scholar 

  47. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (Radiance-Htn Trio): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021;397(10293):2476–86.

    Article  CAS  PubMed  Google Scholar 

  48. Schlaich MP, Schmieder RE, Bakris G, Blankestijn PJ, Böhm M, Campese VM, et al. International expert consensus statement: percutaneous transluminal renal denervation for the treatment of resistant hypertension. J Am Coll Cardiol. 2013;62(22):2031–45.

    Article  PubMed  Google Scholar 

  49. Schmieder RE, Mahfoud F, Azizi M, Pathak A, Dimitriadis K, Kroon AA, et al. European society of hypertension position paper on renal denervation 2018. J Hypertens. 2018;36(10):2042–8.

    Article  CAS  PubMed  Google Scholar 

  50. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 esc/Esh guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041.

    Article  CAS  PubMed  Google Scholar 

  51. Lobo MD, Sharp ASP, Kapil V, Davies J, De Belder MA, Cleveland T, et al. Joint Uk Societies’ 2019 consensus statement on renal denervation. Heart. 2019;105(19):1456–63.

    Article  CAS  PubMed  Google Scholar 

  52. Ong PJ, Foo D, Ho HH. Successful treatment of resistant hypertension with percutaneous renal denervation therapy. Heart. 2012;98(23):1754–5.

    Article  PubMed  Google Scholar 

  53. Ho HH, Foo D, Ong PJ. Successful preoperative treatment of a patient with resistant hypertension who had percutaneous renal denervation therapy before bariatric surgery. J Clin Hypertens (Greenwich). 2012;14(8):569–70.

    Article  Google Scholar 

  54. Yang JH, Choi SH, Gwon HC. Percutaneous renal sympathetic denervation for the treatment of resistant hypertension with heart failure: first experience in Korea. J Korean Med Sci. 2013;28(6):951–4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jiang XJ, Liang T, Dong H, Peng M, Ma WJ, Guan T, et al. Safety and short-term efficacy of renal sympathetic denervation in the treatment of resistant hypertension. Zhonghua Yi Xue Za Zhi. 2012;92(46):3265–8.

    PubMed  Google Scholar 

  56. Kario K, Yamamoto E, Tomita H, Okura T, Saito S, Ueno T, et al. Sufficient and persistent blood pressure reduction in the final long-term results from Symplicity Htn-Japan - safety and efficacy of renal denervation at 3 years. Circ J. 2019;83(3):622–9.

    Article  CAS  PubMed  Google Scholar 

  57. Kim BK, Böhm M, Mahfoud F, Mancia G, Park S, Hong MK, et al. Renal denervation for treatment of uncontrolled hypertension in an Asian population: results from the global Symplicity registry in South Korea (Gsr Korea). J Hum Hypertens. 2016;30(5):315–21.

    Article  CAS  PubMed  Google Scholar 

  58. Wang TD, Lee YH, Chang SS, Tung YC, Yeh CF, Lin YH, et al. 2019 consensus statement of the Taiwan hypertension society and the Taiwan society of cardiology on renal denervation for the management of arterial hypertension. Acta Cardiol Sin. 2019;35(3):199–230.

    PubMed  PubMed Central  Google Scholar 

  59. Kario K, Kim BK, Aoki J, Wong AY, Lee YH, Wongpraparut N, et al. Renal denervation in Asia: consensus statement of the Asia renal denervation consortium. Hypertension. 2020;75(3):590–602.

    Article  CAS  PubMed  Google Scholar 

  60. Ueshima H, Sekikawa A, Miura K, Turin TC, Takashima N, Kita Y, et al. Cardiovascular disease and risk factors in Asia: a selected review. Circulation. 2008;118(25):2702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kario K, Chen CH, Park S, Park CG, Hoshide S, Cheng HM, et al. Consensus document on improving hypertension management in Asian patients, taking into account Asian characteristics. Hypertension. 2018;71(3):375–82.

    Article  CAS  PubMed  Google Scholar 

  62. Wang TD, Goto S, Bhatt DL, Steg PG, Chan JC, Richard AJ, et al. Ethnic differences in the relationships of anthropometric measures to metabolic risk factors in Asian patients at risk of Atherothrombosis: results from the reduction of Atherothrombosis for continued health (reach) registry. Metabolism. 2010;59(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hoshide S, Wang JG, Park S, Chen CH, Cheng HM, Huang QF, et al. Treatment considerations of clinical physician on hypertension management in Asia. Curr Hypertens Rev. 2016;12(2):164–8.

    Article  PubMed  Google Scholar 

  64. Arima H, Murakami Y, Lam TH, Kim HC, Ueshima H, Woo J, et al. Effects of prehypertension and hypertension subtype on cardiovascular disease in the Asia-Pacific region. Hypertension. 2012;59(6):1118–23.

    Article  CAS  PubMed  Google Scholar 

  65. Kario K, Bhatt DL, Brar S, Bakris GL. Differences in dynamic diurnal blood pressure variability between Japanese and American treatment-resistant hypertensive populations. Circ J. 2017;81(9):1337–45.

    Article  PubMed  Google Scholar 

  66. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997;96(6):1859–62.

    Article  CAS  PubMed  Google Scholar 

  67. Omboni S, Aristizabal D, De La Sierra A, Dolan E, Head G, Kahan T, et al. Hypertension types defined by clinic and ambulatory blood pressure in 14 143 patients referred to hypertension clinics worldwide. Data from the Artemis study. J Hypertens. 2016;34(11):2187–98.

    Article  CAS  PubMed  Google Scholar 

  68. Choi K, Choi S. Current status and future perspectives of renal denervation. Korean Circ J. 2021;51(9):717–32.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Victor RG. Carotid Baroreflex activation therapy for resistant hypertension. Nat Rev Cardiol. 2015;12(8):451–63.

    Article  PubMed  Google Scholar 

  70. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

    Article  CAS  PubMed  Google Scholar 

  71. Illig KA, Levy M, Sanchez L, Trachiotis GD, Shanley C, Irwin E, et al. An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase ii Rheos feasibility trial. J Vasc Surg. 2006;44(6):1213–8.

    Article  PubMed  Google Scholar 

  72. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel Baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.

    Article  PubMed  Google Scholar 

  73. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73.

    Article  PubMed  Google Scholar 

  74. De Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA, et al. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69(5):836–43.

    Article  PubMed  CAS  Google Scholar 

  75. Alnima T, De Leeuw PW, Kroon AA. Baropacing As a new option for treatment of resistant hypertension. Eur J Pharmacol. 2015;763(Pt A):23–7.

    Article  CAS  PubMed  Google Scholar 

  76. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for Baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    Article  PubMed  Google Scholar 

  77. Zile MR, Lindenfeld J, Weaver FA, Zannad F, Galle E, Rogers T, et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J Am Coll Cardiol. 2020;76(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  78. Weber MA, Mahfoud F, Schmieder RE, Kandzari DE, Tsioufis KP, Townsend RR, et al. Renal denervation for treating hypertension: current scientific and clinical evidence. Jacc Cardiovasc Interv. 2019;12(12):1095–105.

    Article  PubMed  Google Scholar 

  79. Sarathy H, Cohen J. Renal denervation for the treatment of hypertension. Clin J Am Soc Nephrol. 2021;16(9):1426–8.

    Article  PubMed  Google Scholar 

  80. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Park E, et al. Catheter-based renal sympathetic denervation exerts acute and chronic effects on renal hemodynamics in swine. Int J Cardiol. 2013;168(2):987–92.

    Article  PubMed  Google Scholar 

  81. Dörr O, Liebetrau C, Möllmann H, Gaede L, Troidl C, Haidner V, et al. Brain-derived neurotrophic factor as a marker for immediate assessment of the success of renal sympathetic denervation. J Am Coll Cardiol. 2015;65(11):1151–3.

    Article  PubMed  CAS  Google Scholar 

  82. De Jong MR, Hoogerwaard AF, Adiyaman A, Smit JJJ, Heeg JE, Van Hasselt BAAM, et al. Renal nerve stimulation identifies Aorticorenal innervation and prevents inadvertent ablation of vagal nerves during renal denervation. Blood Press. 2018;27(5):271–9.

    Article  PubMed  CAS  Google Scholar 

  83. De Jong MR, Adiyaman A, Gal P, Smit JJ, Delnoy PP, Heeg JE, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68(3):707–14.

    Article  PubMed  CAS  Google Scholar 

  84. Fischell TA, Vega F, Raju N, Johnson ET, Kent DJ, Ragland RR, et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention. 2013;9(1):140–7.

    Article  PubMed  Google Scholar 

  85. Heuser RR, Mhatre AU, Buelna TJ, Berci WL, Hubbard BS. A novel non-vascular system to treat resistant hypertension. EuroIntervention. 2013;9(1):135–9.

    Article  PubMed  Google Scholar 

  86. Burchell AE, Lobo MD, Sulke N, Sobotka PA, Paton JF. Arteriovenous anastomosis: is this the way to control hypertension? Hypertension. 2014;64(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  87. Kapil V, Sobotka PA, Saxena M, Mathur A, Knight C, Dolan E, et al. Central iliac arteriovenous anastomosis for hypertension: targeting mechanical aspects of the circulation. Curr Hypertens Rep. 2015;17(9):585.

    Article  PubMed  Google Scholar 

  88. Ratcliffe L, Hart E, Patel N, Szydler A, Chrostowska N, Wolf J. Unilateral carotid body resection As an anti-hypertensive strategy: a proof of principle study in resistant hypertensive patients. J Hum Hypertens. 2015;29(10):625.

    Google Scholar 

  89. Narkiewicz K, Ratcliffe LE, Hart EC, Briant LJ, Chrostowska M, Wolf J, et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. Jacc Basic Transl Sci. 2016;1(5):313–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmett Tsz Yeung Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, E.T.Y., Low, A.F.H. (2022). Mechanical Interventional Therapies for Hypertension: Present Status and Future Prospects. In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics