Skip to main content

Relation of Genetics and Obesity with Hypertension: An Asian Perspective

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 720 Accesses

Abstract

Genetic factors are important in hypertension pathophysiology and several genes and polymorphisms that predispose to hypertension and its complications have been identified by genome-wide association studies. However, there are limited hypertension genome-wide and candidate-gene association studies in Asia, and the majority come from East Asian countries. Most of the polymorphisms identified are identical to those in European populations and more studies are needed. Hypertension polygenic risk scores are being evaluated for identification of hypertension risk and early aggressive management. Generalized and abdominal obesity are important hypertension risk factors and are widely prevalent in most Asian countries. Asia-specific hypertension pharmacogenomics and other management strategies, including technology, need further evaluation. A social determinants approach to hypertension management is important to ameliorate multiple hypertension risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehret GB. Genetics of hypertension. In: Bakris GL, Sorrentino MJ, editors. Hypertension: a companion to Braunwald’s heart disease. Philadelphia: Elsevier; 2018. p. 52–9.

    Chapter  Google Scholar 

  2. Milford DV. Investigation of hypertension and the recognition of monogenic hypertension. Arch Dis Child. 1999;81(5):452–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luft FC. Monogenic hypertension: lessons from the genome. Kidney Int. 2001;60:381–90.

    Article  CAS  PubMed  Google Scholar 

  4. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171(10):1433–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kurland L, Liljedahl U, Lind L. Hypertension and SNP genotyping in antihypertensive treatment. Cardiovasc Toxicol. 2005;5(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  6. Doris PA. Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension. 2002;39(2 Pt 2):323–31.

    Article  CAS  PubMed  Google Scholar 

  7. Kotchen TA. Hypertensive vascular disease. In: Jameson JL, Fauci AS, Kasper DL, et al., editors. Harrison’ principles of internal medicine. 20th ed. New York: McGraw Hill; 2018. p. 1890–906.

    Google Scholar 

  8. Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18:235–50.

    Article  CAS  PubMed  Google Scholar 

  9. Lip S, Padmanabhan S. Genomics of blood pressure and hypertension: extending the mosaic theory toward stratification. Can J Cardiol. 2020;36:694–705.

    Article  PubMed  Google Scholar 

  10. Sharma S. Hypertension gene risk score in diagnosis and prediction of complications. RUHS J Health Sci. 2021;6:53–62.

    Article  Google Scholar 

  11. Xi B, Shen Y, Reilly KH, Wang X, Mi J. Recapit ulation of four hypertension susceptibility genes (CSK, CYP17A1, MTHFR, FGF5) in east Asians. Metabolism. 2013;62:196–203.

    Article  CAS  PubMed  Google Scholar 

  12. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in East Asians. Nat Genet. 2011 Jun;43(6):531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47(11):1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Wang JG. Genome-wide association studies of hypertension and several other cardiovascular diseases. Pulse (Basel). 2019;6:169–86.

    Article  Google Scholar 

  15. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24:367–72.

    Article  CAS  PubMed  Google Scholar 

  16. Tabara Y, Kohara K, Miki T, Millennium Genome Project for Hypertension. Hunting for genes of hypertension: the Millennium Genome Project for Hypertension. Hypertens Res. 2012;35:567–73.

    Article  CAS  PubMed  Google Scholar 

  17. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry geneome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47:1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torkmani A, Wineinger NE, Topol E. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581–90.

    Article  CAS  Google Scholar 

  20. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. International Consortium for Blood Pressure Genome-Wide Association Studies. Nature. 2011;478:103–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mars N, Koskela JT, Ripatti P, Kiiskinen TTJ, Havulinna AS, Lindbohm JV, et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat Med. 2020;26:549–57.

    Article  CAS  PubMed  Google Scholar 

  22. Kullo IJ, Dikilitas O. Polygenic risk scores for diverse ancestries. J Am Coll Cardiol. 2020;76:715–8.

    Article  PubMed  Google Scholar 

  23. G B, Sharma S. Hypertension gene risk score and influence of physical activity on cardiovascular risk in hypertension: Mendelian randomization study. PhD Thesis, Rajasthan University of Health Sciences, Jaipur; 2021.

    Google Scholar 

  24. Wang M, Menon R, Mishra S, Patel AP, Chaffin M, Tanneeru D, et al. Validation of a genome-wide polygenic risk score for coronary artery disease in South Asians. J Am Coll Cardiol. 2020;76:703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paul S, INDIGENIUS Consortium. Report submitted to Indian Council of Medical Research; 2021.

    Google Scholar 

  26. Magavern EF, Kaski JC, Turner RM, Drexel H, Janmohamed A, Scourfield A, et al. The role of pharmacogenomics in contemporary cardiovascular therapy: a position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur Heart J Cardiovasc Pharmacother. 2022;8:85.

    Article  PubMed  Google Scholar 

  27. Parsa A, Kao WHL, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race and progression of chronic kidney disease. N Engl J Med. 2013;369:2183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynch AI, Eckfeldt JH, Davis BR, Ford CE, Boerwinkle E, Leiendecker-Foster C, et al. Gene panels to help identify subgroups at high and low risk of coronary heart disease among those randomized to antihypertensive treatment: the GenHAT study. Pharmacogenet Genomics. 2012;22:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta R, Wood DA. Primary prevention of ischemic heart disease: populations, individuals and healthcare professionals. Lancet. 2019;394:685–96.

    Article  PubMed  Google Scholar 

  30. Landsberg L. Obesity. In: Bakris GL, Sorrentino MJ, editors. Hypertension: a companion to Braunwald’s heart disease. Philadelphia: Elsevier; 2018. p. 328–34.

    Chapter  Google Scholar 

  31. NCD Risk Factor Collaboration (NCD-RiSC). Rising rural body-mass index is the main driver of global obesity epidemic in adults. Nature. 2019;569:260–4.

    Article  CAS  Google Scholar 

  32. Kushner RF. Evaluation and management of obesity. In: Jameson JL, Kasper DL, Longo DL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. 20th ed. New York: McGraw Hill; 2018. p. 2843–50.

    Google Scholar 

  33. Misra A, Jayawardene R, Anoop S. Obesity in South Asia: phenotype, morbidities and mitigation. Curr Obes Rep. 2019;8:43–52.

    Article  PubMed  Google Scholar 

  34. Guptha LS. A cross-sectional epidemiology study of the relationships between body mass index and the risk of diabetes, and diabetes and the QRISK2 10-Year cardiovascular risk score using India Heart Watch data. PhD thesis, Trident University International, San Diego; 2021. https://www.proquest.com/openview/8d3d1772bfee8ca075388311d98982e7/1?pq-origsite=gscholar&cbl=18750&diss=y. Accessed 26 Jun 2021.

  35. Victor RG. Systemic hypertension: mechanisms and diagnosis. In: Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E, editors. Braunwald’s heart disease. 11th ed. New Delhi: Elsevier; 2019. p. 910–27.

    Google Scholar 

  36. Wang C, Fu W, Cao S, Xu H, Tian Q, Gan Y, et al. Association of adiposity indicators with hypertension among Chinese adults. Nutr Metab Cardiovasc Dis. 2021;31:1391–400.

    Article  PubMed  Google Scholar 

  37. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, et al. Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;395:795–808.

    Article  PubMed  Google Scholar 

  39. Ford ND, Patel SA, Venkat Narayan KM. Obesity in low and middle-income countries: burden, drivers and emerging challenges. Annu Rev Public Health. 2017;38:145–64.

    Article  PubMed  Google Scholar 

  40. Apóstolo J, Cooke R, Bobrowicz-Campos E, Santana S, Marcucci M, Cano A, et al. Predicting risk and outcomes for frail older adults : an umbrella review of frailty screening tools. JBI Database Syst Rev Implement Rep. 2017;15:1154–208.

    Article  Google Scholar 

  41. Hu K, Zhou Q, Jiang Y, Shang Z, Mei F, Gao Q, et al. Association between frailty and mortality, falls and hospitalization among patients with hypertension: a systematic review and meta-analysis. Biomed Res Int. 2021;2021:2690296.

    PubMed  PubMed Central  Google Scholar 

  42. Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a life-course strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on Hypertension. Lancet. 2016;388:2665–712.

    Article  PubMed  Google Scholar 

  43. Tronieri JS, Wadden TA, Chao AM, Tsai AG. Primary care interventions for obesity: review of the evidence. Curr Obes Rep. 2019;8:128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  CAS  Google Scholar 

  45. LeBlanc EL, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioural and pharmacotherapy weight loss interventions to prevent obesity related morbidity and mortality in adults: an updated systematic review for the US Preventive Services Task Force. Report No. 18-05239-EF-1. Rockville: Agency for Healthcare Research and Quality (US); 2018.

    Google Scholar 

  46. Srivastava G, Apovian CL. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2018;4:12–24.

    Article  CAS  Google Scholar 

  47. NCD Countdown 2030 Collaborators. NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4. Lancet. 2020;396:918–34.

    Article  Google Scholar 

  48. Gupta R, Yusuf S. Challenges in management and prevention of ischemic heart disease in low socioeconomic status people in LLMICs. BMC Med. 2019;17(1):209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jeemon P, Gupta R, Onen C, Adler A, Gaziano TA, Prabhakaran D, et al. Management of hypertension and dyslipidemia for primary prevention of cardiovascular diseases. In: Prabhakaran D, Anand S, Gaziano TA, Mbanya JC, Wu Y, Nugent R, editors. Cardiovascular, respiratory, and related disorders, Chap. 22. 3rd ed. Washington, DC: The World Bank; 2017.

    Google Scholar 

  50. Gupta R, Yusuf S. Towards better hypertension management in India. Indian J Med Res. 2014;139(5):657–60.

    PubMed  PubMed Central  Google Scholar 

  51. Bhavnani SP, Parakh K, Atrej A, Druz R, Graham GN, Hayek SS, et al. Roadmap for innovation- ACC health policy statement of healthcare transformation in the era of digital big data and precision health: a report of the American College of Cardiology Task Force on health policy statements and systems of care. J Am Coll Cardiol. 2017;2017(70):2696–718.

    Article  Google Scholar 

  52. Gupta R, Gupta S. Social determinants’ approach for hypertension control. In: CVS R, editor. Cardiological Society of India: hypertension reviews 2020. Noida: Incessant Nature Science Publishers; 2020. p. 11–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R. (2022). Relation of Genetics and Obesity with Hypertension: An Asian Perspective. In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics