Skip to main content

Effect of Pollution and Environmental Factors on Hypertension and CVD

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease in Asia

Abstract

Environmental exposures such as ambient air pollution, household air pollution, green spaces and built environment, night light, noise, extremes of temperature, metals and metalloids are ubiquitous. In recent times, there have been several reports highlighting the adverse effects of these environmental exposures on health globally. This chapter reviews a variety of environmental exposures and their effects on hypertension and cardiovascular diseases. Mechanisms through which these environmental exposures, especially air pollution, contribute to the development of hypertension and cardiovascular diseases are discussed. Furthermore, gaps in the literature are highlighted and policy recommendations suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69(9):876–8.

    Article  PubMed  Google Scholar 

  2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor air pollution. IARC Monogr Eval Carcinog Risks Hum. 2016;109:9–444.

    PubMed Central  Google Scholar 

  3. US Standards. https://www.epa.gov/criteria-air-pollutants/naaqs-table#2. Accessed 18 Aug 2021.

  4. WHO & EU Standards. https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards. Accessed 18 Aug 2021.

  5. Indian Standards. http://cpcbenvis.nic.in/air_pollution_main.html#. Accessed 18 Aug 2021.

  6. Chinese standards. http://english.mee.gov.cn/Resources/standards/Air_Environment/quality_standard1/201605/W020160511506615956495.pdf. Accessed 18 Aug 2021.

  7. U.S. EPA. Integrated science assessment (ISA) for particulate matter (Final Report, Dec 2019). https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534.

  8. Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(17):2054–70.

    Article  CAS  PubMed  Google Scholar 

  9. WHO. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

  10. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. World Development Indicators. https://datatopics.worldbank.org/world-development-indicators/stories/the-global-distribution-of-air-pollution.html. Accessed 18 Aug 2021.

  12. EPA US. Integrated science assessment for oxides of nitrogen–health criteria. Washington, DC: US Environmental Protection Agency [Google Scholar]; 2016.

    Google Scholar 

  13. https://www.epa.gov/so2-pollution/sulfur-dioxide-basics.

  14. Apte K, Salvi S. Household air pollution and its effects on health. F1000Res. 2016;5:F1000 Faculty Rev-2593.

    Google Scholar 

  15. Fullerton DG, Bruce N, Gordon SB. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R Soc Trop Med Hyg. 2008;102(9):843–51.

    Article  PubMed  Google Scholar 

  16. Balakrishnan K, Ghosh S, Ganguli B, Sambandam S, Bruce N, Barnes DF, et al. State and national household concentrations of PM2.5 from solid cookfuel use: results from measurements and modeling in India for estimation of the global burden of disease. Environ Health. 2013;12(1):77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. WHO Indoor Air Quality Guidelines. Household fuel combustion. Geneva: World Health Organization; 2014.

    Google Scholar 

  18. Münzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, et al. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J. 2018;39(38):3543–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol. 2020;17(10):656–72.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.

    Article  CAS  PubMed  Google Scholar 

  21. Kinney PL. Interactions of climate change, air pollution, and human health. Curr Environ Health Rep. 2018;5(1):179–86.

    Article  CAS  PubMed  Google Scholar 

  22. WHO. 2003. https://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf.

  23. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayes RB, Lim C, Zhang Y, Cromar K, Shao Y, Reynolds HR, Silverman DT, Jones RR, Park Y, Jerrett M, Ahn J, Thurston GD. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol. 2020;49(1):25–35.

    Article  PubMed  Google Scholar 

  25. Zhao L, Liang HR, Chen FY, Chen Z, Guan WJ, Li JH. Association between air pollution and cardiovascular mortality in China: a systematic review and meta-analysis. Oncotarget. 2017;8(39):66438–48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brook RD, Newby DE, Rajagopalan S. Air pollution and cardiometabolic disease: an update and call for clinical trials. Am J Hypertens. 2017;31(1):1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ruidavets JB, Cournot M, Cassadou S, Giroux M, Meybeck M, Ferrières J. Ozone air pollution is associated with acute myocardial infarction. Circulation. 2005;111(5):563–9.

    Article  CAS  PubMed  Google Scholar 

  29. Raza A, Bellander T, Bero-Bedada G, Dahlquist M, Hollenberg J, Jonsson M, et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur Heart J. 2014;35(13):861–8.

    Article  CAS  PubMed  Google Scholar 

  30. Henrotin JB, Zeller M, Lorgis L, Cottin Y, Giroud M, Béjot Y. Evidence of the role of short-term exposure to ozone on ischaemic cerebral and cardiac events: the Dijon Vascular Project (DIVA). Heart. 2010;96(24):1990–6.

    Article  PubMed  Google Scholar 

  31. Atkinson RW, Butland BK, Dimitroulopoulou C, Heal MR, Stedman JR, Carslaw N. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. BMJ Open. 2016;6(2):e009493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307(7):713–21.

    Article  CAS  PubMed  Google Scholar 

  33. Lin CK, Lin RT, Chen PC, Wang P, De Marcellis-Warin N, Zigler C, et al. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. Sci Rep. 2018;8(1):2611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Routledge HC, Manney S, Harrison RM, Ayres JG, Townend JN. Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart. 2006;92(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  35. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382(9897):1039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoek G, Brunekreef B, Fischer P, van Wijnen J. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12(3):355–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. India State-Level Disease Burden Initiative Air Pollution Collaborators. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet Health. 2019;3(1):e26–39.

    Article  Google Scholar 

  39. Simkovich SM, Underhill LJ, Kirby MA, Goodman D, Crocker ME, Hossen S, et al. Design and conduct of facility-based surveillance for severe childhood pneumonia in the Household Air Pollution Intervention Network (HAPIN) trial. ERJ Open Res. 2020;6(1):00308–2019.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Checkley W, Williams KN, Kephart JL, Fandiño-Del-Rio M, Steenland NK, Gonzales GF, et al. Effects of a household air pollution intervention with liquefied petroleum gas on cardiopulmonary outcomes in Peru. A randomized controlled trial. Am J Respir Crit Care Med. 2021;203(11):1386–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Walzer D, Gordon T, Thorpe L, Thurston G, Xia Y, Zhong H, et al. Effects of home particulate air filtration on blood pressure: a systematic review. Hypertension. 2020;76(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  42. Morishita M, Adar SD, D’Souza J, Ziemba RA, Bard RL, Spino C, et al. Effect of portable air filtration systems on personal exposure to fine particulate matter and blood pressure among residents in a low-income senior facility: a randomized clinical trial. JAMA Intern Med. 2018;178(10):1350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009;54(3):659–67.

    Article  CAS  PubMed  Google Scholar 

  44. Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens. 2014;32(11):2130–40; discussion 2141.

    Article  CAS  PubMed  Google Scholar 

  45. Lin H, Guo Y, Zheng Y, Di Q, Liu T, Xiao J, et al. Long-term effects of ambient PM2.5 on hypertension and blood pressure and attributable risk among older Chinese adults. Hypertension. 2017;69(5):806–12.

    Article  CAS  PubMed  Google Scholar 

  46. Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C, et al. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med. 2011;68(3):224–30.

    Article  PubMed  Google Scholar 

  47. Chung M, Wang DD, Rizzo AM, Gachette D, Delnord M, Parambi R, et al. Association of PNC, BC, and PM2.5 measured at a central monitoring site with blood pressure in a predominantly near highway population. Int J Environ Res Public Health. 2015;12(3):2765–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. 2014;11:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Morishita M, Bard RL, Kaciroti N, Fitzner CA, Dvonch T, Harkema JR, et al. Exploration of the composition and sources of urban fine particulate matter associated with same-day cardiovascular health effects in Dearborn, Michigan. J Expo Sci Environ Epidemiol. 2015;25(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  50. Lee BJ, Kim B, Lee K. Air pollution exposure and cardiovascular disease. Toxicol Res. 2014;30(2):71–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016;8(1):E8–E19.

    PubMed  PubMed Central  Google Scholar 

  52. Prabhakaran D, Mandal S, Krishna B, Magsumbol M, Singh K, Tandon N, et al. GeoHealth Hub Study Investigators, COE-CARRS Study Investigators. Exposure to particulate matter is associated with elevated blood pressure and incident hypertension in urban India. Hypertension. 2020;76(4):1289–98.

    Article  CAS  PubMed  Google Scholar 

  53. Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des. 2016;22(1):28–51.

    Article  CAS  PubMed  Google Scholar 

  54. Hoffmann B, Luttmann-Gibson H, Cohen A, Zanobetti A, de Souza C, Foley C, et al. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ Health Perspect. 2012;120:241–6.

    Article  CAS  PubMed  Google Scholar 

  55. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009;54(3):659–67.

    Article  CAS  PubMed  Google Scholar 

  56. Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M, et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology. 2010;21(3):396–404.

    Article  PubMed  Google Scholar 

  57. Day DB, Xiang J, Mo J, Li F, Chung M, Gong J, et al. Association of ozone exposure with cardiorespiratory pathophysiologic mechanisms in healthy adults. JAMA Intern Med. 2017;177:1344–53.

    Article  PubMed  PubMed Central  Google Scholar 

  58. https://www3.epa.gov/region1/eco/uep/openspace.html.

  59. WHO Regional Office for Europe. Urban green spaces and health: a review of evidence. Copenhagen: WHO Regional Office for Europe (WHO); 2016. http://www.euro.who.int/en/health-topics/environment-and-health/urban-health/publications/2016/urban-green-spaces-and-health-a-review-of-evidence-2016. Accessed 4 Aug 2021.

    Google Scholar 

  60. Chow CK, Lock K, Teo K, Subramanian SV, McKee M, Yusuf S. Environmental and societal influences acting on cardiovascular risk factors and disease at a population level: a review. Int J Epidemiol. 2009;38(6):1580–94.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bowler DE, Buyung-Ali LM, Knight TM, Pullin AS. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health. 2010;10:456.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Takebayashi H. Influence of urban green area on air temperature of surrounding built-up area. Climate. 2017;5:60.

    Article  Google Scholar 

  63. Liu H-L, Shen Y-S. The impact of green space changes on air pollution and microclimates: a case study of the Taipei metropolitan area. Sustainability. 2014;6:8827.

    Article  Google Scholar 

  64. Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Green. 2016;17:192–201.

    Article  Google Scholar 

  65. Pope CA 3rd, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution - epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109(1):71–7.

    Article  PubMed  Google Scholar 

  66. Shen YS, Lung SC. Can green structure reduce the mortality of cardiovascular diseases? Sci Total Environ. 2016;566-567:1159–67.

    Article  CAS  PubMed  Google Scholar 

  67. Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res. 2017;121(2):162–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frumkin H, Bratman GN, Breslow SJ, Cochran B, Kahn PH Jr, Lawler JJ, et al. Nature contact and human health: a research agenda. Environ Health Perspect. 2017;125(7):075001.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Klompmaker JO, Hoek G, Bloemsma LD, Gehring U, Strak M, Wijga AH, et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 2018;160:531–40.

    Article  CAS  PubMed  Google Scholar 

  70. Tamosiunas A, Grazuleviciene R, Luksiene D, Dedele A, Reklaitiene R, Baceviciene M, et al. Accessibility and use of urban green spaces, and cardiovascular health: findings from a Kaunas cohort study. Environ Health. 2014;13(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Seo S, Choi S, Kim K, Kim SM, Park SM. Association between urban green space and the risk of cardiovascular disease: a longitudinal study in seven Korean metropolitan areas. Environ Int. 2019;125:51–7.

    Article  PubMed  Google Scholar 

  72. Mitchell R, Popham F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet. 2008;372(9650):1655–60.

    Article  PubMed  Google Scholar 

  73. Chum A, O’Campo P. Cross-sectional associations between residential environmental exposures and cardiovascular diseases. BMC Public Health. 2015;15:438.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hu Z, Liebens J, Rao KR. Linking stroke mortality with air pollution, income, and greenness in Northwest Florida: an ecological geographical study. Int J Health Geogr. 2008;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mytton OT, Townsend N, Rutter H, Foster C. Green space and physical activity: an observational study using health survey for England data. Health Place. 2012;18(5):1034–41.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pereira G, Foster S, Martin K, Christian H, Boruff BJ, Knuiman M, et al. The association between neighborhood greenness and cardiovascular disease: an observational study. BMC Public Health. 2012;12:466.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Villeneuve PJ, Jerrett M, Su JG, Burnett RT, Chen H, Wheeler AJ, et al. A cohort study relating urban green space with mortality in Ontario, Canada. Environ Res. 2012;115:51–8.

    Article  CAS  PubMed  Google Scholar 

  78. Wilker EH, Wu CD, McNeely E, Mostofsky E, Spengler J, Wellenius GA, et al. Green space and mortality following ischemic stroke. Environ Res. 2014;133:42–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Takano T, Nakamura K, Watanabe M. Urban residential environments and senior citizens’ longevity in megacity areas: the importance of walkable green spaces. J Epidemiol Community Health. 2002;56:913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang D, Lau KK, Yu R, Wong SYS, Kwok TTY, Woo J. Neighbouring green space and mortality in community-dwelling elderly Hong Kong Chinese: a cohort study. BMJ Open. 2017;7(7):e015794.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xu L, Ren C, Yuan C, Nichol JE, Goggins WB. An Ecological Study of the Association between Area-Level Green Space and Adult Mortality in Hong Kong. Climate. 2017;5(3):55.

    Google Scholar 

  82. Dzhambov AM, Markevych I, Lercher P. Greenspace seems protective of both high and low blood pressure among residents of an Alpine valley. Environ Int. 2018;121(Pt 1):443–52.

    Article  PubMed  Google Scholar 

  83. Shanahan DF, Bush R, Gaston KJ, Lin BB, Dean J, Barber E, et al. Health benefits from nature experiences depend on dose. Sci Rep. 2016;6:28551.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yang BY, Markevych I, Bloom MS, Heinrich J, Guo Y, Morawska L, et al. Community greenness, blood pressure, and hypertension in urban dwellers: the 33 communities Chinese Health Study. Environ Int. 2019;126:727–34.

    Article  PubMed  Google Scholar 

  85. Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet. 2017;26(R2):R128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. BioEssays. 2015;37(10):1119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019;16(7):437–47.

    Article  PubMed  Google Scholar 

  88. Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl). 2019;23(3):147–56.

    Article  Google Scholar 

  89. Morris CJ, Purvis TE, Mistretta J, Hu K, Scheer FAJL. Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J Biol Rhythm. 2017;32(2):154–64.

    Article  CAS  Google Scholar 

  90. William J. Elliott, cyclic and circadian variations in cardiovascular events. Am J Hypertens. 2001;14(9 Pt 2):291S–5S.

    Google Scholar 

  91. Iob E, Steptoe A. Cardiovascular disease and hair cortisol: a novel biomarker of chronic stress. Curr Cardiol Rep. 2019;21(10):116.

    Article  PubMed  PubMed Central  Google Scholar 

  92. James SM, Honn KA, Gaddameedhi S, Van Dongen HPA. Shift work: disrupted circadian rhythms and sleep-implications for health and Well-being. Curr Sleep Med Rep. 2017;3(2):104–12.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018;128(6):2157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev. 2016;37:584–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Münzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014;35(13):829–36.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Berglund B, Lindvall T, Schwela DH, World Health Organization, Occupational and Environmental Health Team. Guidelines for community noise. World Health Organization; 1999. https://apps.who.int/iris/handle/10665/66217.

    Google Scholar 

  98. Hahad O, Kröller-Schön S, Daiber A, Münzel T. The cardiovascular effects of noise. Dtsch Arztebl Int. 2019;116(14):245–50.

    PubMed  PubMed Central  Google Scholar 

  99. Hammer MS, Swinburn TK, Neitzel RL. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect. 2014;122(2):115–9.

    Article  PubMed  Google Scholar 

  100. IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021 (In Press).

    Google Scholar 

  101. Ponjoan A, Blanch J, Alves-Cabratosa L, Martí-Lluch R, Comas-Cufí M, Parramon D, et al. Effects of extreme temperatures on cardiovascular emergency hospitalizations in a Mediterranean region: a self-controlled case series study. Environ Health. 2017;16(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Turner LR, Barnett AG, Connell D, Tong S. Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis. Epidemiology (Camb Mass). 2012;23:594–606.

    Article  Google Scholar 

  103. Ryti NRI, Guo Y, Jaakkola JJK. Global Association of Cold Spells and Adverse Health Effects: a systematic review and meta-analysis. Environ Health Perspect. 2016;124:12–22.

    Article  PubMed  Google Scholar 

  104. Phung D, Thai PK, Guo Y, Morawska L, Rutherford S, Chu C. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ. 2016;550:1084–102.

    Article  CAS  PubMed  Google Scholar 

  105. Shaposhnikov D, Revich B, Gurfinkel Y, Naumova E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int J Biometeorol. 2014;58:799–808.

    Article  PubMed  Google Scholar 

  106. Lavigne E, Gasparrini A, Wang X, Chen H, Yagouti A, Fleury MD, et al. Extreme ambient temperatures and cardiorespiratory emergency room visits: assessing risk by comorbid health conditions in a time series study. Environ Health Glob Access Sci Source. 2014;13:5.

    Google Scholar 

  107. Ma W, Xu X, Peng L, Kan H. Impact of extreme temperature on hospital admission in Shanghai, China. Sci Total Environ. 2011;409:3634–7.

    Article  CAS  PubMed  Google Scholar 

  108. Madrigano J, Mittleman MA, Baccarelli A, Goldberg R, Melly S, von Klot S, et al. Temperature, myocardial infarction, and mortality: effect modification by individual- and area-level characteristics. Epidemiology (Camb Mass). 2013;24:439–46.

    Article  Google Scholar 

  109. Sartini C, Barry SJE, Wannamethee SG, Whincup PH, Lennon L, Ford I, et al. Effect of cold spells and their modifiers on cardiovascular disease events: evidence from two prospective studies. Int J Cardiol. 2016;218:275–83.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ezekowitz JA, Bakal JA, Westerhout CM, Giugliano RP, White H, Keltai M, et al. The relationship between meteorological conditions and index acute coronary events in a global clinical trial. Int J Cardiol. 2013;168:2315–21.

    Article  PubMed  Google Scholar 

  111. Aubinière-Robb L, Jeemon P, Hastie CE, Patel RK, McCallum L, Morrison D, et al. Blood pressure response to patterns of weather fluctuations and effect on mortality. Hypertension. 2013;62(1):190–6.

    Article  PubMed  CAS  Google Scholar 

  112. Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS. Ambient temperature and cardiovascular mortality: a systematic review and meta-analysis. PeerJ. 2017;5:e3574.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress. Compr Physiol. 2015;5(1):17–43.

    PubMed  PubMed Central  Google Scholar 

  114. De Blois J, Kjellstrom T, Agewall S, Ezekowitz JA, Armstrong PW, Atar D. The effects of climate change on cardiac health. Cardiology. 2015;131(4):209–17.

    Article  PubMed  Google Scholar 

  115. Wilson TE, Tollund C, Yoshiga CC, et al. Effects of heat and cold stress on central vascular pressure relationships during orthostasis in humans. J Physiol. 2007;585:279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rowell LB, Brengelmann GL, Murray JA. Cardiovascular responses to sustained high skin temperature in resting man. J Appl Physiol. 1969;27:673–80.

    Article  CAS  PubMed  Google Scholar 

  117. Gasparrini A, Armstrong B, Kovats S, Wilkinson P. The effect of high temperatures on cause-specific mortality in England and Wales. Occup Environ Med. 2012;69(1):56–61.

    Article  PubMed  Google Scholar 

  118. Barnett AG. Temperature and cardiovascular deaths in the US elderly: changes over time. Epidemiology. 2007;18(3):369–72.

    Article  PubMed  Google Scholar 

  119. ATSDR (Agency for Toxic Substances and Disease Registry). CERCLA priority list of hazardous substances. 2005. http://www.atsdr.cdc.gov/cercla/05list.html/, https://www.atsdr.cdc.gov/. Accessed 17 Aug 2021.

  120. Abhyankar LN, Jones MR, Guallar E, Navas-Acien A. Arsenic exposure and hypertension: a systematic review. Environ Health Perspect. 2012;120(4):494–500.

    Article  CAS  PubMed  Google Scholar 

  121. Mumford JL, Wu K, Xia Y, Kwok R, Yang Z, Foster J, et al. Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. Environ Health Perspect. 2007;115(5):690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tseng CH, Chong CK, Tseng CP, Hsueh YM, Chiou HY, Tseng CC, et al. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett. 2003;137(1–2):15–21.

    Article  CAS  PubMed  Google Scholar 

  123. Chiou HY, Huang WI, Su CL, Chang SF, Hsu YH, Chen CJ. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 1997;28(9):1717–23.

    Article  CAS  PubMed  Google Scholar 

  124. Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, et al. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals. 2010;23(5):769–82.

    Article  CAS  PubMed  Google Scholar 

  125. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.

    Article  CAS  PubMed  Google Scholar 

  126. Gallagher CM, Meliker JR. Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect. 2010;118(12):1676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bernhard D, Rossmann A, Henderson B, Kind M, Seubert A, Wick G. Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arterioscler Thromb Vasc Biol. 2006;26(4):833–8.

    Article  CAS  PubMed  Google Scholar 

  128. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133–64.

    PubMed  Google Scholar 

  129. Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol. 2011;2011:870125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Staessen JA, Bulpitt CJ, Fagard R, Lauwerys RR, Roels H, Thijs L, et al. Hypertension caused by low-level lead exposure: myth or fact? J Cardiovasc Risk. 1994;1(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  131. Schwartz J. Lead, blood pressure, and cardiovascular disease in men. Arch Environ Health. 1995;50(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  132. Nawrot TS, Thijs L, Den Hond EM, Roels HA, Staessen JA. An epidemiological re-appraisal of the association between blood pressure and blood lead: a meta-analysis. J Hum Hypertens. 2002;16(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  133. Schober SE, Mirel LB, Graubard BI, Brody DJ, Flegal KM. Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect. 2006;114(10):1538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Muntner P, Menke A, DeSalvo KB, Rabito FA, Batuman V. Continued decline in blood lead levels among adults in the United States: the National Health and Nutrition Examination Surveys. Arch Intern Med. 2005;165(18):2155–61.

    Article  CAS  PubMed  Google Scholar 

  135. Brauer M, Casadei B, Harrington RA, Kovacs R, Sliwa K, WHF Air Pollution Expert Group. Taking a stand against air pollution-the impact on cardiovascular disease: a joint opinion from the World Heart Federation, American College of Cardiology, American Heart Association, and the European Society of Cardiology. Circulation. 2021;143(14):e800–4.

    Article  PubMed  Google Scholar 

  136. LOGAN WP. Mortality in the London fog incident, 1952. Lancet. 1953;1(6755):336–8.

    Article  CAS  PubMed  Google Scholar 

  137. Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su C, Hampel R, Franck U, Wiedensohler A, Cyrys J, Pan X, et al. Assessing responses of cardiovascular mortality to particulate matter air pollution for pre-, during- and post-2008 Olympics periods. Environ Res. 2015;142:112–22.

    Article  CAS  PubMed  Google Scholar 

  139. Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360(9341):1210–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorairaj Prabhakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaganathan, S., Prabhakaran, D. (2022). Effect of Pollution and Environmental Factors on Hypertension and CVD. In: Ram, C.V.S., Teo, B.W.J., Wander, G.S. (eds) Hypertension and Cardiovascular Disease in Asia. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-95734-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95734-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95733-9

  • Online ISBN: 978-3-030-95734-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics