Skip to main content

Two-Round MPC Without Round Collapsing Revisited – Towards Efficient Malicious Protocols

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13507))

Included in the following conference series:

Abstract

Recent works have made exciting progress on the construction of round optimal, two-round, Multi-Party Computation (MPC) protocols. However, most proposals so far are still complex and inefficient. In this work, we improve the simplicity and efficiency of two-round MPC in the setting with dishonest majority and malicious security. Our protocols make use of the Random Oracle (\({\textsf{RO}}\)) and a generalization of the Oblivious Linear Evaluation (\(\textsf{OLE}\)) correlated randomness, called tensor \(\textsf{OLE}\), over a finite field \(\mathbb {F}\), and achieve the following:

  • MPC for Boolean Circuits: Our two-round, maliciously secure MPC protocols for computing Boolean circuits, has overall (asymptotic) computational cost \(O(S\cdot n^3 \cdot \log |\mathbb {F}|)\), where S is the size of the circuit computed, n the number of parties, and \(\mathbb {F}\) a field of characteristic two. The protocols also make black-box calls to a Pseudo-Random Function (PRF).

  • MPC for Arithmetic Branching Programs (ABPs): Our two-round, information theoretically and maliciously secure protocols for computing ABPs over a general field \(\mathbb {F}\) has overall computational cost \(O(S^{1.5}\cdot n^3\cdot \log |\mathbb {F}|)\), where S is the size of ABP computed.

Both protocols achieve security levels inverse proportional to the size of the field \(|\mathbb {F}|\).

Our construction is built upon the simple two-round MPC protocols of [Lin-Liu-Wee TCC’20], which are only semi-honest secure. Our main technical contribution lies in ensuring malicious security using simple and lightweight checks, which incur only a constant overhead over the complexity of the protocols by Lin, Liu, and Wee. In particular, in the case of computing Boolean circuits, our malicious MPC protocols have the same complexity (up to a constant overhead) as (insecurely) computing Yao’s garbled circuits in a distributed fashion.

Finally, as an additional contribution, we show how to efficiently generate tensor \(\textsf{OLE}\) correlation in fields of characteristic two using OT.

The work was partially done when Liu was a postdoctoral researcher at University of Washington.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These are protocols secure against corrupted parties who follow the protocol specification but may choose its input and randomness arbitrarily.

  2. 2.

    When the field is \(\textsf{GF}(2)\), \(\textsf{OLE}\) correlation coincides with the \(\textsf{OT}\) correlation.

  3. 3.

    An equivalent definition of semi-honest MPRE can be found in [ABT18], in which it is just called “MPRE”. In [ABT19], malicious MPRE is called “non-interactive reduction” and the canonical protocol of a MPRE is called “\(\hat{f}\)-oracle-aided protocol”. Both [ABT18] and [ABT19] consider the honest majority setting, so they only require the canonical protocol to be secure against a bounded number of corruptions.

  4. 4.

    Section 2.2 outlines how to canonicalize \(\hat{f}\). Formally, canonical form allows some coordinates to be linear instead of \({\textsf {2MultPlus}}\). The linear coordinates are easier to handle. We ignore them in the overview.

  5. 5.

    Note the transpose of \(\textbf{B}_2\). This makes the equation remains unchanged upon exchanging subscripts.

References

  1. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two rounds. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 152–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_6

    Chapter  Google Scholar 

  2. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-complexity of malicious MPC. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 504–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_18

    Chapter  Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

    Google Scholar 

  4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_2

    Chapter  Google Scholar 

  5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  7. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press, October 2018

    Google Scholar 

  9. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

    Chapter  Google Scholar 

  10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1292–1303. ACM Press, October 2016

    Google Scholar 

  11. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6

    Chapter  Google Scholar 

  12. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: Karlin, A.R. (ed.) ITCS 2018, vol. 94, pp. 21:1–21:21. LIPIcs, January 2018

    Google Scholar 

  13. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from DDH. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 320–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_12

    Chapter  Google Scholar 

  14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988

    Google Scholar 

  15. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  16. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-round adaptively secure multiparty computation from standard assumptions. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 175–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_7

    Chapter  Google Scholar 

  17. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

    Google Scholar 

  18. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

    Chapter  Google Scholar 

  19. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

    Google Scholar 

  20. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

    Chapter  Google Scholar 

  21. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_22

    Chapter  Google Scholar 

  22. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  23. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23

    Chapter  Google Scholar 

  24. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_23

    Chapter  Google Scholar 

  25. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  26. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC, pp. 554–563. ACM Press, May 1994

    Google Scholar 

  27. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

    Chapter  Google Scholar 

  28. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8

    Chapter  Google Scholar 

  29. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_5

    Chapter  Google Scholar 

  30. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_4

    Chapter  Google Scholar 

  31. Goldreich, O., Micali, S., Wigderson, A.: How to prove All NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11

    Chapter  Google Scholar 

  32. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_24

    Chapter  Google Scholar 

  33. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press, October 2017

    Google Scholar 

  34. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  35. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-Gan, Israel, 17–19 June 1997, Proceedings, pp. 174–184. IEEE Computer Society (1997)

    Google Scholar 

  36. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304. IEEE Computer Society Press, November 2000

    Google Scholar 

  37. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

    Chapter  Google Scholar 

  38. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007

    Google Scholar 

  40. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_31

    Chapter  Google Scholar 

  41. Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: On the round complexity of black-box secure MPC. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 214–243. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_8

    Chapter  Google Scholar 

  42. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  43. Lin, H., Liu, T., Wee, H.: Information-theoretic 2-round MPC without round collapsing: adaptive security, and more. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 502–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_18

    Chapter  Google Scholar 

  44. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_16

    Chapter  Google Scholar 

  45. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  46. Paskin-Cherniavsky, A.: Secure computation with minimal interaction. Ph.D. thesis, Computer Science Department, Technion, Haifa, Israel (2012). Advised by Yuval Ishai and Eyal Kushilevitz

    Google Scholar 

  47. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9

    Chapter  Google Scholar 

  48. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

    Google Scholar 

Download references

Acknowledgement

We thank Antigoni Polychroniadou for being our shepherd and her help, and the anonymous Crypto reviewers for their helpful comments and suggestions. We thank Hoeteck Wee for being part of the initial discussion and his suggestion of directions. Finally, we thank Stefano Tessaro for his comments.

Huijia Lin and Tianren Liu were supported by NSF grants CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI research Award, a Cisco research award, and a Simons Collaboration on the Theory of Algorithmic Fairness. In addition, Tianren Liu was supported by NSFC excellent young scientists fund program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijia Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, H., Liu, T. (2022). Two-Round MPC Without Round Collapsing Revisited – Towards Efficient Malicious Protocols. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13507. Springer, Cham. https://doi.org/10.1007/978-3-031-15802-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15802-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15801-8

  • Online ISBN: 978-3-031-15802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics