Skip to main content

One-Message Secure Reductions: On the Cost of Converting Correlations

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14081))

Included in the following conference series:

  • 1176 Accesses

Abstract

Correlated secret randomness is a useful resource for secure computation protocols, often enabling dramatic speedups compared to protocols in the plain model. This has motivated a line of work on identifying and securely generating useful correlations.

Different kinds of correlations can vary greatly in terms of usefulness and ease of generation. While there has been major progress on efficiently generating oblivious transfer (OT) correlations, other useful kinds of correlations are much more costly to generate. Thus, it is highly desirable to develop efficient techniques for securely converting copies of a given source correlation into copies of a given target correlation, especially when the former are cheaper to generate than the latter.

In this work, we initiate a systematic study of such conversions that only involve a single uni-directional message. We refer to such a conversion as a one-message secure reduction (OMSR). Recent works (Agarwal et al., Eurocrypt 2022; Khorasgani et al., Eurocrypt 2022) studied a similar problem when no communication is allowed; this setting is quite restrictive, however, with few non-trivial conversions being feasible. The OMSR setting substantially expands the scope of feasible results, allowing for direct applications to existing MPC protocols.

We obtain the following positive and negative results.

  • OMSR constructions. We present a general rejection-sampling based technique for OMSR with OT source correlations. We apply it to substantially improve in the communication complexity of optimized protocols for distributed symmetric cryptography (Dinur et al., Crypto 2021).

  • OMSR lower bounds. We develop general techniques for proving lower bounds on the communication complexity of OMSR, matching our positive results up to small constant factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P., Narayanan, V., Pathak, S., Prabhakaran, M., Prabhakaran, V.M., Rehan, M.A.: Secure Non-interactive reduction and spectral analysis of correlations. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–EUROCRYPT 2022. LNCS, vol. 13277, pp. 797–827. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_28

  2. Agrawal, S., et al.: Cryptography from one-way communication: on completeness of finite channels. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 653–685. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_22

    Chapter  Google Scholar 

  3. Agrawal, S., et al.: Secure computation from one-way noisy communication, or: anti-correlation via anti-concentration. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 124–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_5

    Chapter  Google Scholar 

  4. Ahlswede, R., Csiszar, I.: Common randomness in information theory and cryptography. II CR capacity. IEEE Trans. Inf. Theory 44(1), 225–240 (1998)

    Google Scholar 

  5. Anantharam, V., Gohari, A.A., Kamath, S., Nair, C.: On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover. CoRR abs/1304.6133 (2013). https://arxiv.org/abs/1304.6133

  6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. Cryptology ePrint Archive, Paper 2010/514 (2010)

    Google Scholar 

  8. Bhushan, K., Misra, A.K., Narayanan, V., Prabhakaran, M.: Secure non-interactive reducibility is decidable. In: TCC (2022)

    Google Scholar 

  9. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112 (1988)

    Google Scholar 

  10. Bogdanov, A., Mossel, E.: On extracting common random bits from correlated sources. IEEE Trans. Inf. Theory 57(10), 6351–6355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_30

    Chapter  Google Scholar 

  12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM CCS, pp. 896–912 (2018)

    Google Scholar 

  13. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology–CRYPTO 2022. CRYPTO 2022. LNCS, vol. 13508, pp. pp. 603–633. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_21

  14. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: ACM CCS, pp. 291–308 (2019)

    Google Scholar 

  15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  17. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14

    Chapter  Google Scholar 

  18. Canonne, C.L., Guruswami, V., Meka, R., Sudan, M.: Communication with imperfectly shared randomness. In: ITCS, pp. 257–262 (2015)

    Google Scholar 

  19. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17

    Chapter  Google Scholar 

  20. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience (2006)

    Google Scholar 

  21. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  22. De, A., Mossel, E., Neeman, J.: Non interactive simulation of correlated distributions is decidable. In: SODA, pp. 2728–2746 (2018)

    Google Scholar 

  23. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015 (2015)

    Google Scholar 

  24. Dinur, I., et al.: MPC-friendly symmetric cryptography from alternating moduli: candidates, protocols, and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 517–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_18

    Chapter  Google Scholar 

  25. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM CCS, pp. 523–535 (2017)

    Google Scholar 

  26. Gács, P., Körner, J.: Common information is far less than mutual information. Probl. Control Inf. Theory 2(2), 149–162 (1973)

    MathSciNet  MATH  Google Scholar 

  27. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_10

    Chapter  Google Scholar 

  28. Ghazi, B., Jayram, T.S.: Resource-efficient common randomness and secret-key schemes. In: SODA, pp. 1834–1853 (2018)

    Google Scholar 

  29. Ghazi, B., Kamath, P., Sudan, M.: Decidability of non-interactive simulation of joint distributions. In: FOCS, pp. 545–554 (2016)

    Google Scholar 

  30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  31. Goyal, S., Narayanan, V., Prabhakaran, M.: Oblivious-transfer complexity of noisy coin-toss via secure zero communication reductions. In: TCC, pp. 89–118 (2022)

    Google Scholar 

  32. Guruswami, V., Radhakrishnan, J.: Tight bounds for communication-assisted agreement distillation. In: CCC, pp. 1–17 (2016)

    Google Scholar 

  33. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

    Google Scholar 

  34. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  35. Kamath, S., Anantharam, V.: On non-interactive simulation of joint distributions. IEEE Trans. Inf. Theory 62(6), 3419–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Secure non-interactive simulation: feasibility and rate. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–EUROCRYPT 2022. LNCS, vol. 13277, pp. 767–796. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_27

  37. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Secure non-interactive simulation from arbitrary joint distributions. In: TCC, pp. 378–407 (2022)

    Google Scholar 

  38. Kilian, J.: Founding crytpography on oblivious transfer. In: STOC, pp. 20–31 (1988)

    Google Scholar 

  39. Narayanan, V., Prabhakaran, M., Prabhakaran, V.M.: Zero-communication reductions. In: TCC, pp. 274–304 (2020)

    Google Scholar 

  40. Ryffel, T., Tholoniat, P., Pointcheval, D., Bach, F.R.: Ariann: low-interaction privacy-preserving deep learning via function secret sharing. Proc. Priv. Enhanc. Technol. 2022(1), 291–316 (2022)

    Google Scholar 

  41. Storrier, K., Vadapalli, A., Lyons, A., Henry, R.: Grotto: screaming fast \((2 + 1)\)-pc for \(\mathbb{Z} _{2^{n}}\) via (2, 2)-DPFs. Cryptology ePrint Archive, Paper 2023/108 (2023). https://eprint.iacr.org/2023/108

  42. Sudan, M., Tyagi, H., Watanabe, S.: Communication for generating correlation: a unifying survey. IEEE Trans. Inf. Theory 66(1), 5–37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wagh, S.: PIKA: secure computation using function secret sharing over rings. Proc. Priv. Enhanc. Technol. 2022(4), 351–377 (2022)

    Google Scholar 

  44. Witsenhausen, H.S.: On sequences of pairs of dependent random variables. SIAM J. Appl. Math. 28(1), 100–113 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for correlated OT with small communication. In: CCS, pp. 1607–1626 (2020)

    Google Scholar 

  47. Yang, P., et al.: FssNN: communication-efficient secure neural network training via function secret sharing. Cryptology ePrint Archive, Paper 2023/073 (2023). https://eprint.iacr.org/2023/073

  48. Yao, A.C.: Protocols for secure computations. In: SFCS, pp. 160–164 (1982)

    Google Scholar 

  49. Yao, A.C.: How to generate and exchange secrets. In: SFCS, pp. 162–167 (1986)

    Google Scholar 

  50. Zhao, L., Chia, Y.K.: The efficiency of common randomness generation. In: Allerton, pp. 944–950 (2011)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for helpful comments. M. Kelkar was partially supported by a Technion research scholarship. Y. Ishai and V. Narayanan were supported by ERC Project NTSC (742754), and ISF grant 2774/20. Y. Ishai was additionally supported by BSF grant 2018393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahimna Kelkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishai, Y., Kelkar, M., Narayanan, V., Zafar, L. (2023). One-Message Secure Reductions: On the Cost of Converting Correlations. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14081. Springer, Cham. https://doi.org/10.1007/978-3-031-38557-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38557-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38556-8

  • Online ISBN: 978-3-031-38557-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics