A New Approach to Round-Optimal Secure Multiparty Computation

  • Prabhanjan AnanthEmail author
  • Arka Rai Choudhuri
  • Abhishek Jain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)


We present a new approach towards constructing round-optimal secure multiparty computation (MPC) protocols against malicious adversaries without trusted setup assumptions. Our approach builds on ideas previously developed in the context of covert multiparty computation [Chandran et al., FOCS’07] even though we do not seek covert security. Using our new approach, we obtain the following results:
  • A five round MPC protocol based on the Decisional Diffie-Hellman (DDH) assumption.

  • A four round MPC protocol based on one-way permutations and sub-exponentially secure DDH. This result is optimal in the number of rounds.

Previously, no four-round MPC protocol for general functions was known and five-round protocols were only known based on indistinguishability obfuscation (and some additional assumptions) [Garg et al., EUROCRYPT’16].



The third author would like to thank Yuval Ishai for describing ideas for constructing a four-round semi-honest MPC protocol using randomizing polynomials.

The first author was supported by grant 360584 from the Simons Foundation. The second and the third authors were supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213.


  1. 1.
    Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. IACR Cryptology ePrint Archive 2017, 402 (2017).
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_29 CrossRefGoogle Scholar
  4. 4.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  5. 5.
    Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, Proceedings, 21–24 October 2006, pp. 345–354 (2006)Google Scholar
  6. 6.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990, pp. 503–513 (1990)Google Scholar
  7. 7.
    Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. IACR Cryptology ePrint Archive 2017, 386 (2017).
  8. 8.
    Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computation. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 238–248. IEEE (2007)Google Scholar
  9. 9.
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: 4-round concurrent non-malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10401, pp. 127–157. Springer, Cham (2017)Google Scholar
  10. 10.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Advances in Cryptology: Proceedings of CRYPTO 1982, Santa Barbara, California, USA, 23–25 August 1982, pp. 205–210 (1982)Google Scholar
  11. 11.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_4 CrossRefGoogle Scholar
  12. 12.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  13. 13.
    Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_8 CrossRefGoogle Scholar
  14. 14.
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_16 CrossRefGoogle Scholar
  15. 15.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  16. 16.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC (1987)Google Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC, pp. 291–304 (1985)Google Scholar
  18. 18.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 695–704 (2011)Google Scholar
  19. 19.
    Goyal, V.: Positive results for concurrently secure computation in the plain model. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012, pp. 41–50 (2012)Google Scholar
  20. 20.
    Goyal, V., Jain, A.: On the round complexity of covert computation. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 191–200. ACM (2010)Google Scholar
  21. 21.
    Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation on the internet in the plain model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 277–294. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_15 CrossRefGoogle Scholar
  22. 22.
    Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: STOC, pp. 1128–1141 (2016)Google Scholar
  23. 23.
    Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-malleability. In: FOCS, pp. 41–50 (2014)Google Scholar
  24. 24.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, 2000, Proceedings, pp. 294–304. IEEE (2000)Google Scholar
  25. 25.
    Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two rounds and its applications. IACR Cryptology ePrint Archive 2017, 330 (2017).
  26. 26.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_21 CrossRefGoogle Scholar
  27. 27.
    Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_36 CrossRefGoogle Scholar
  28. 28.
    Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. IACR Cryptology ePrint Archive 2017, 291 (2017).
  29. 29.
    Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991). doi: 10.1007/3-540-38424-3_26 CrossRefGoogle Scholar
  30. 30.
    Lin, H., Pass, R., Soni, P.: Two-round concurrent non-malleable commitment from time-lock puzzles. IACR Cryptology ePrint Archive 2017, 273 (2017).
  31. 31.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_26 CrossRefGoogle Scholar
  32. 32.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, Washington, DC, USA, 7–9 January 2001, pp. 448–457 (2001)Google Scholar
  33. 33.
    Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_4 CrossRefGoogle Scholar
  34. 34.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 13–16 June 2004, pp. 232–241 (2004)Google Scholar
  35. 35.
    Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_32 CrossRefGoogle Scholar
  36. 36.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  37. 37.
    Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive 2005, 187 (2005)Google Scholar
  38. 38.
    Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24638-1_11 CrossRefGoogle Scholar
  39. 39.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, New York, NY, USA, 17–18 October 1999, pp. 543–553 (1999)Google Scholar
  40. 40.
    von-Ahn, L., Hopper, N., Langford, J.: Covert two-party computation. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 513–522. ACM (2005)Google Scholar
  41. 41.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS, pp. 531–540 (2010)Google Scholar
  42. 42.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Prabhanjan Ananth
    • 1
    Email author
  • Arka Rai Choudhuri
    • 2
  • Abhishek Jain
    • 2
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations