Skip to main content

The Broader Aspects of Treating Diabetes with the Application of Nanobiotechnology

  • Chapter
  • First Online:
Advances in Diabetes Research and Management

Abstract

When it comes to the topic of diabetes, the first thing that comes to mind is “diabetes mellitus.” Another form of diabetes is diabetes insipidus, with different disease mechanisms that do not fall within this chapter’s scope. Before we start discussing what diabetes is, let us first dig deep into history and find out how diabetes got its name and when people first knew about this disease. From various sources, we know that diabetes was known to ancient Egyptians, Greeks, and Indians. The word mellitus is a Latin word meaning sweet, and Greeks used the term mellitus to define something sweet. The Greeks knew about honey, which they called mellita; hence, the name mellitus comes from this term. Ancient Greeks used to taste urine as a method to test for diabetes. They also noticed that people with sweet urine tend to drink more fluids, and the fluid almost gets out of the body immediately like a siphon. They knew siphon by the term diabetes, and from there, we got the name “diabetes mellitus.” The earliest record, written around 1500 BC, of diabetes we got is from Ebers papyrus, which was excavated from graves in Thebes, an ancient Egyptian city, around 1862 AD. Egyptologist Georg Ebers published the findings from the papyrus in 1874 AD. Diabetes was also known to Indians at around the same time by another name—“madhumeha,” which roughly translates to honey urine. Indian physicians by that time also noticed that urine from such patients attracted flies and ants, thereby devising the first clinical test for diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeghate, E., & Kalász, H. (2011). Amylin analogues in the treatment of diabetes mellitus: Medicinal chemistry and structural basis of its function. The Open Medicinal Chemistry Journal, 5(Suppl 2), 78–81. https://doi.org/10.2174/1874104501105010078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications—A review. Journal of Advanced Research, 6(2), 105–121.

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh, A., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam, M. S., Ahad, A., Abidin, L., Aqil, M., Mir, S. R., & Mujeeb, M. (2018). Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomedicine & Pharmacotherapy, 97, 1514–1520. https://doi.org/10.1016/j.biopha.2017.11.073. Epub 2017 Nov 20. PMID: 29793314.

    Article  CAS  Google Scholar 

  • Arunachalam, A., Jeganath, S., Yamini, K., & Tharangini, K. (2012). Niosomes: A novel drug delivery system. International Journal of Novel Trends in Pharmaceutical Sciences, 2(1), 25–31.

    Google Scholar 

  • Balakumar, P., Maung-U, K., & Jagadeesh, G. (2016). Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacological Research, 113, 600–609.

    Article  PubMed  Google Scholar 

  • Bassas-galia, M., Follonier, S., Pusnik, M., & Zinn, M. (2017). 2-natural polymers: A source of inspiration. In G. Perale & J. Hilborn (Eds.), Bioresorbable polymers for biomedical applications (pp. 31–64). Woodhead Publishing.

    Chapter  Google Scholar 

  • Benn, T. M. (2009). The release of engineered nanomaterials from commercial products. Arizona State University.

    Google Scholar 

  • Bhosale, R., Ghodake, P., Mane, A., & Ghadge, A. (2013). Nanocochleates: A novel carrier for drug transfer. Journal of Scientific and Innovative Research, 2, 964–969.

    Google Scholar 

  • Bradley, C. (2002). The glitazones: A new treatment for type 2 diabetes mellitus. Intensive & Critical Care Nursing, 18(3), 189–191. https://doi.org/10.1016/s0964-3397(02)00010-1. PMID: 12405274.

    Article  Google Scholar 

  • Buya, A. B., Beloqui, A., Memvanga, P. B., & Préat, V. (2020). Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics, 12(12), 1194. https://doi.org/10.3390/pharmaceutics12121194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan, P., Tamrakar, A. K., Mahajan, S., & GBKS, P. (2018). Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sciences, 213, 226–235. https://doi.org/10.1016/j.lfs.2018.10.027. Epub 2018 Oct 18. PMID: 30343126.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Guo, M., & Wang, S. (2016). Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nanosized drug delivery system. Drug Development and Industrial Pharmacy, 42(12), 1968–1976.

    Article  CAS  PubMed  Google Scholar 

  • Chitkara, D., Nikalaje, S. K., Mittal, A., Chand, M., & Kumar, N. (2012). Development of quercetin nanoformulation and in vivo evaluation using streptozotocstreptozotocin-inducedt model. Drug Delivery and Translational Research, 2(2), 112–123. https://doi.org/10.1007/s13346-012-0063-5. PMID: 25786720.

    Article  CAS  PubMed  Google Scholar 

  • Chu, A. J. (2022). Quarter-century explorations of bioactive polyphenols: Diverse health benefits. Frontiers in Bioscience-Landmark, 27(4), 134.

    Article  CAS  Google Scholar 

  • Daisy, P., & Saipriya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine, 7, 1189–1202. https://doi.org/10.2147/IJN.S26650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derosa, G., & Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Archives of Medical Science, 8(5), 899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(4), 548–564.

    CAS  PubMed  Google Scholar 

  • Donnelly, L. A., Morris, A. D., Frier, B. M., Ellis, J. D., Donnan, P. T., Durrant, R., et al. (2005). Frequency and predictors of hypoglycaemia in type 1 and insulin-treated type 2 diabetes: A population-based study. Diabetic Medicine, 22(6), 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi, P., Kansal, S., Sharma, M., et al. (2012). Exploiting 4-sulphate N-acetyl galactosamine decorated gelatine nanoparticles for effective targeting to professional phagocytes in vitro and in vivo. Journal of Drug Targeting, 20(10), 883–896.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, V., & Kalra, S. (2011). Choosing a gliptin. Indian Journal of Endocrinology and Metabolism, 15(4), 298–308. https://doi.org/10.4103/2230-8210.85583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, P., Taiyab, A., & Hassan, M. I. (2021). Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. Advances in Protein Chemistry and Structural Biology, 124, 47–85.

    Article  CAS  PubMed  Google Scholar 

  • Hamid Akash, M. S., Rehman, K., & Chen, S. (2015). Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polymer Reviews, 55(3), 371–406. https://doi.org/10.1080/15583724.2014.995806

    Article  CAS  Google Scholar 

  • Hansen, K. B., Vilsbøll, T., & Knop, F. K. (2010). Incretin mimetics: A novel therapeutic option for patients with type 2 diabetes—A review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3, 155–163. PMID: 21437085; PMCID: PMC3047973.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P.-K., Lin, S.-X., Tsai, M. J., Leong, M., Lin, S. R., Kankala, R., et al. (2017). Encapsulation of 16-Hydroxycleroda-3,13-Dine-16,15-Olide in mesoporous silica nanoparticles as a natural dipeptidyl peptidase-4 inhibitor potentiated hypoglycemia in diabetic mice. Nanomaterials, 7(5), 112. https://doi.org/10.3390/nano7050112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: An advanced mode of drug delivery system. 3 Biotechnology, 5(2), 123–127. https://doi.org/10.1007/s13205-014-0214-0

    Article  Google Scholar 

  • Kapoor, R., Singh, S., Tripathi, M., Bhatnagar, P., Kakkar, P., & Gupta, K. C. (2014). O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress-induced apoptosis in primary rat hepatocytes. PLoS One, 9(2), e89124. https://doi.org/10.1371/journal.pone.0089124. PMID: 24586539; PMCID: PMC3930636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharmaceutical Journal, 24(4), 473–484. https://doi.org/10.1016/j.jsps.2014.11.013. Epub 2014 Dec 8. PMID: 27330378; PMCID: PMC4908060.

    Article  PubMed  Google Scholar 

  • Landree, L. E., Hanlon, A. L., Strong, D. W., Rumbaugh, G., Miller, I. M., Thupari, J. N., et al. (2004). C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. Journal of Biological Chemistry, 279(5), 3817–3827.

    Article  CAS  PubMed  Google Scholar 

  • Lotfy, M., Adeghate, J., Kalasz, H., Singh, J., & Adeghate, E. (2017). Chronic complications of diabetes mellitus: A mini review. Current Diabetes Reviews, 13(1), 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M., Qiu, Q., Luo, X., Liu, X., Sun, J., Wang, C., et al. (2019). Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmaceutical Sciences, 14(3), 265–274. https://doi.org/10.1016/j.ajps.2018.05.011

    Article  PubMed  Google Scholar 

  • Mazari, S. A., Ali, E., Abro, R., Khan, F. S. A., Ahmed, I., Ahmed, M., et al. (2021). Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges–a review. Journal of Environmental Chemical Engineering, 9(2), 105028.

    Article  CAS  Google Scholar 

  • Meena, T., & Smita, B. (2021). Nanocochleates: A potential drug delivery system. Journal of Molecular Liquids, 334, 116115.,ISSN 0167-7322,. https://doi.org/10.1016/j.molliq.2021.116115

    Article  CAS  Google Scholar 

  • Meglitinide—An overview|ScienceDirect Topics. (n.d.).

    Google Scholar 

  • Meo, S. A., Usmani, A. M., & Qalbani, E. (2017). Prevalence of type 2 diabetes in the Arab world: Impact of GDP and energy consumption. European Review for Medical and Pharmacological Sciences, 21(6), 1303–1312.

    CAS  PubMed  Google Scholar 

  • Mir, M., Ahmed, N., & Rehman, A. U. (2017). Recent applications of PLGA bPLGA-basedtructures in drug delivery. Colloids and Surfaces. B, Biointerfaces, 159, 217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038. Epub 2017 Jul 28. PMID: 28797972.

    Article  CAS  PubMed  Google Scholar 

  • Mohseni, R., ArabSadeghabadi, Z., Ziamajidi, N., et al. (2019). Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of snare proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Research Letters, 14, 227. https://doi.org/10.1186/s11671-019-3042-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaou, K. C. (2018). The emergence and evolution of organic synthesis and why it is important to sustain it as an advancing art and science for its own sake. Israel Journal of Chemistry, 58(1–2), 104–113.

    Article  CAS  Google Scholar 

  • Nie, X., Chen, Z., Pang, L., Wang, L., Jiang, H., Chen, Y., Zhang, Z., Fu, C., Ren, B., & Zhang, J. (2020). Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. International Journal of Nanomedicine, 15, 10215–10240. https://doi.org/10.2147/IJN.S285134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patlak, M. (2002). New weapons to combat an ancient disease: Treating diabetes. The FASEB Journal, 16(14), 1853. https://doi.org/10.1096/fj.020974bkt. PMID 12468446. S2CID 35412249

    Article  PubMed  Google Scholar 

  • Pednekar P. P., Godiyal S. C., Jadhav, K. R., & Kadam, V. J. (2017). Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. In Nanostructures for cancer therapy (pp. 593–621). Elesvier https://doi.org/10.1016/b978-0-323-46144-3.00023-4

  • Pradeepa, R., & Mohan, V. (2021). Epidemiology of type 2 diabetes in India. Indian Journal of Ophthalmology, 69(11), 2932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani, R., Dahiya, S., Dhingra, D., Dilbaghi, N., Kaushik, A., Kim, K. H., & Kumar, S. (2019). Antidiabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. International Journal of Nanomedicine, 14, 4383–4395. https://doi.org/10.2147/IJN.S205319. PMID: 31354267; PMCID: PMC6580421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadder, A., Abraham, S. K., & Khuda-Bukhsh, A. R. (2016). NanopharmNano pharmaceutical using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environmental Toxicology and Pharmacology, 43, 27–37. https://doi.org/10.1016/j.etap.2016.02.010. Epub 2016 Feb 12. PMID: 26943895.

    Article  CAS  PubMed  Google Scholar 

  • Seino, S. (2012). Cell signaling in insulin secretion: The molecular targets of ATP, cAMP, and sulfonylurea. Diabetologia, 55(8), 2096–2108. https://doi.org/10.1007/s00125-012-25629. PMID 22555472. S2CID 7146975

    Article  CAS  PubMed  Google Scholar 

  • Seoudy, A. K., Schulte, D. M., Hollstein, T., Böhm, R., Cascorbi, I., & Laudes, M. (2021). Gliflozins for the treatment of congestive heart failure and renal failure in type 2 diabetes. Deutsches Ärzteblatt International, 118, 122–129. https://doi.org/10.3238/arztebl.m2021.0016. Epub ahead of print. PMID: 33531116; PMCID: PMC8204375.

    Article  PubMed  Google Scholar 

  • Shaeena, M. H., & Mani, R. K. (2021). Diabetes and nanotechnology–A recent advance in treatment of Diabetes. Journal of University of Shanghai for Science and Technology, 23(11), 445–453.

    Article  Google Scholar 

  • Sharma, P. K., Saxena, P., Jaswanth, A., Chalamaiah, M., & Balasubramaniam, A. (2017). Anti-diabetic activity of lycopene niosomes: Experimental observation. Journal of Pharmaceutical Sciences and Drug Development, 4, 103.

    Google Scholar 

  • Sonia, T. A., & Sharma, C. P. (2012). An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 17(13–14), 784–792. https://doi.org/10.1016/j.drudis.2012.03.019. Epub 2012 Apr 9. PMID: 22521664.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C. Q. (2007). Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, 35(1), 1–159.

    Article  Google Scholar 

  • Torché, A. M., Jouan, H., Le Corre, P., Albina, E., Primault, R., Jestin, A., & Le Verge, R. (2000). Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. International Journal of Pharmaceutics, 201(1), 15–27. https://doi.org/10.1016/s0378-5173(00)00364-1. PMID: 10867261.

    Article  PubMed  Google Scholar 

  • Washington, K., Kularatne, R., Karmegam, V., Biewer, M., & Stefan, M. (2016). Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1446. https://doi.org/10.1002/wnan.1446

    Article  Google Scholar 

  • Xu, H. Y., Liu, C. S., Huang, C. L., Chen, L., Zheng, Y. R., Huang, S. H., & Long, X. Y. (2019). Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids and Surfaces. B, Biointerfaces, 181, 927–934. https://doi.org/10.1016/j.colsurfb.2019.06.006. Epub 2019 Jun 4. PMID: 31382342.

    Article  CAS  PubMed  Google Scholar 

  • Yach, D., Stuckler, D., & Brownell, K. D. (2006). Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nature Medicine, 12(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Li, Y., Chen, Q., He, Y., Wang, H., Yang, L., Guo, S., Meng, Z., Cui, J., Xue, M., & Chen, X. D. (2016). Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 103, 136–148. https://doi.org/10.1016/j.ejpb.2016.03.019. Epub 2016 Mar 25. PMID: 27020531.

    Article  CAS  PubMed  Google Scholar 

  • Yücel, Ç., Karatoprak, G. S., & Aktaş, Y. (2018). Nanoliposomal resveratrol as a novel approach to treatment of diabetes mellitus. Journal of Nanoscience and Nanotechnology, 18(6), 3856–3864. https://doi.org/10.1166/jnn.2018.15247. PMID: 29442719.

    Article  CAS  PubMed  Google Scholar 

  • Yücel, Ç., Karatoprak, G. Ş., & Atmar, A. (2018). Novel resveratrol-loaded nanocochleates and effectiveness in the treatment of diabetes. Fabad Journal of Pharmaceutical Sciences, 43(2), 35–44.

    Google Scholar 

  • Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., et al. (2020). Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The study’s authors have not reported any apparent conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, R., Chakraborty, A., Jana, K., Sarkar, B., Biswas, P., Madhu, N.R. (2023). The Broader Aspects of Treating Diabetes with the Application of Nanobiotechnology. In: Noor, R. (eds) Advances in Diabetes Research and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0027-3_7

Download citation

Publish with us

Policies and ethics