Skip to main content

A Comprehensive Pharmacological Appraisal of Indian Traditional Medicinal Plants with Anti-diabetic Potential

  • Chapter
  • First Online:
Advances in Diabetes Research and Management

Abstract

Diabetes mellitus, a chronic metabolic dysfunction found in people of different age groups worldwide, is now seriously threatening mankind’s health. Despite the application of insulin and other synthetic oral anti-diabetic drugs, there is a great need for the discovery and development of novel anti-diabetic drugs of plant origin as the synthetic drugs have more side effects in long-term use. Therefore, researchers engaged in discovering novel bioactive compounds from plants bearing anti-diabetic potential also have fewer unwanted side effects than conventional drugs. In this chapter, an attempt has been made to discuss the prospective medicinal plants comprising either plant extracts or isolated bioactive phyto-constituents bearing anti-diabetic potential, which has been reported in several in vitro, in vivo, or clinical studies. Because of this, the mechanism of action and the management of diabetes will be valuable to scientists, chemists, and pharmaceutical corporations for the discovery of novel anti-diabetic drugs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulazeez, S. S. (2013). Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharmaceutical Journal, 613(4), 1–8. https://doi.org/10.1016/j.jsps.2013.12.012

    Article  Google Scholar 

  • Acharya, C. K., Madhu, N. R., Khan, N. S., & Guha, P. (2021). Improved reproductive efficacy of Phyllanthus emblica L. (Gaertn.) on testis of male Swiss mice and a pilot study of its potential values. International Journal of Food Sciences and Nutrition, 10(4), 7–14.

    Google Scholar 

  • Agrawal, R., Sethiya, N. K., & Mishra, S. H. (2013). Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharmaceutical Biology, 51(5), 635–642. https://doi.org/10.3109/13880209.2012.761244

    Article  CAS  PubMed  Google Scholar 

  • Ahlem, S., Khaled, H., Wafa, M., Sofiane, B., Mohamed, D., Jean-Claude, M., & Abdelfattah el, F. (2009). Oral administration of Eucalyptus globulus extract reduces the alloxan-induced oxidative stress in rats. Chemico-Biological Interactions, 181(1), 71–76. https://doi.org/10.1016/j.cbi.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  • Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 800714. https://doi.org/10.3389/fendo.2022.800714

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Shaqha, W. M., Khan, M., Salam, N., Azzi, A., & Chaudhary, A. A. (2015). Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic Wistar rats. BMC Complementary and Alternative Medicine, 15(1), 379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amalraj, A., & Gopi, S. (2016). Medicinal properties of Terminalia arjuna (Roxb.) wight & amp; Arn.: A review. Journal of Traditional and Complementary Medicine, 7(1), 65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ananda, P. K., Kumarappan, C. T., Christudas, S., & Kalaichelvan, V. K. (2012). Effect of biophytum sensitivum on streptozotocin and nicotinamide-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine, 2(1), 31–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atal, S., Agrawal, R. P., Vyas, S., Phadnis, P., & Rai, N. (2012). Evaluation of the effect of piperine on blood glucose level in alloxan-induced diabetic mice. Acta Poloniae Pharmaceutica, 69(5), 965–969.

    CAS  PubMed  Google Scholar 

  • Atanas, G., Waltenberger, A. B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33, 1582–1614.

    Article  Google Scholar 

  • Balaraman, A. K., Singh, J., Dash, S., & Maity, T. K. (2010). Antihyperglycemic and hypolipidemic effects of Melothria maderaspatana and Coccinia indica in Streptozotocin induced diabetes in rats. Saudi Pharmaceutical Journal, 18(3), 173–178. https://doi.org/10.1016/j.jsps.2010.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Baliga, M. S., Bhat, H. P., Baliga, B. R. V., Wilson, R., & Palatty, P. L. (2011). Phytochemistry, traditional uses and pharmacology of Eugenia jambolana lam. (black plum): A review. Food Research International, 44, 1776–1789.

    Article  CAS  Google Scholar 

  • Barghamdi, B., Ghorat, F., Asadollahi, K., Sayehmiri, K., Peyghambari, R., & Abangah, G. (2016). Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. Journal of Pharmacy & Bioallied Sciences, 8(2), 130–134.

    Article  CAS  Google Scholar 

  • Baset, M. E., Ali, T. I., Elshamy, H., El-Sadek, A. M., Sami, D. G., Badawy, M. T., & Abdellatif. (2020). Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): A comparison between oral and intraperitoneal administration—an animal study. International Journal of Functional Nutrition, 1, 2. https://doi.org/10.3892/ijfn.2020.2

    Article  Google Scholar 

  • Baskaran, K., Ahamath, B. K., Shanmugasundaram, K. R., & Shanmugasundaram, E. R. B. (1990). Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. Journal of Ethnopharmacology, 30(3), 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Bhushan, M. S., Rao, C. H. V., Ojha, S. K., Vijayakumar, M., & Verma, A. (2010). An analytical review of plants for anti-diabetic activity with their phytoconstituent & mechanism of action. International Journal of Pharmaceutical Sciences and Research, 1(1), 29–46.

    Google Scholar 

  • Bhuyan, D. J., & Basu, A. (2017). Phenolic compounds, potential health benefits and toxicity. In Q. V. Vuong (Ed.), Utilisation of bioactive compounds from agricultural and food waste (pp. 27–59). CRC Press.

    Chapter  Google Scholar 

  • Bnouham, M., Ziyyat, A., Mekhfi, H., Tahri, A., & Legssyer, A. (2006). Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990–2000). International Dubai Diabetes and Endocrinology Journal, 14(1), 1–25.

    Google Scholar 

  • Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in brassica vegetables. Molecules, 16(1), 251–280.

    Article  CAS  Google Scholar 

  • Costello, R. A., & Shivkumar, A. S. (2021). Stat Pearls [Internet]. Accessed June 6, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK513225/

  • Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and medicinal uses of terpenes.

    Google Scholar 

  • Diabetes-Australia Insulin. (2022). Accessed June 6, 2022, from https://www.diabetesaustralia.com.au/living-with-diabetes/medicine/insulin/

  • Eliza, J., Daisy, P., Ignacimuthu, S., & Duraipandiyan, V. (2009). Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chemico-Biological Interactions, 182(1), 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Eno, A. E., Ofem, O. E., Nku, C. O., Ani, E. J., & Itam, E. H. (2008). Stimulation of insulin secretion by Viscum album (mistletoe) leaf extract in streptozotocin-induced diabetic rats. African Journal of Medicine and Medical Sciences, 37(2), 141–147.

    CAS  PubMed  Google Scholar 

  • Francesca, G. M. R., Daniela, E. G. F., & Vivian, M. C. (2019). Secondary metabolites in plants: Main classes, phytochemical analysis and pharmacological activities. Bionatura, 4(4), 1000–1009. https://doi.org/10.21931/RB/2019.04.04.11

    Article  Google Scholar 

  • Ganogpichayagrai, A., Palanuvej, C., & Ruangrungsi, N. (2017). Antidiabetic and anticancer activities of Mangifera indica cv Okrong leaves. Journal of Advanced Pharmaceutical Technology & Research, 8(1), 19–24.

    Article  CAS  Google Scholar 

  • Gayathri, M., & Kannabiran, K. (2008). Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian Journal of Clinical Biochemistry, 23(4), 394–400. https://doi.org/10.1007/s12291-008-0087-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Geberemeskel, G. A., Debebe, Y. G., & Nguse, N. A. (2019). Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum graecum L.) on hyperlipidemia in diabetic patients. Journal of Diabetes Research, 2019, 1–8. https://doi.org/10.1155/2019/8507453

    Article  CAS  Google Scholar 

  • Grover, J. K., Yadav, S., & Vats, V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology, 81(1), 81–100.

    Article  CAS  PubMed  Google Scholar 

  • Guang-Kai, X. U., Xiao-Ying, Q. I., Guo-Kai, W. A., Guo-Yong, X. I., Xu-Sen, L. I., Chen-Yu, S. U., Bao-Lin, L. I., & Min-Jian, Q. I. (2017). Antihyperglycemic, antihyperlipidemic and antioxidant effects of standard ethanol extract of Bombax ceiba leaves in high-fat-diet-and streptozotocin-induced type 2 diabetic rats. Chinese Journal of Natural Medicines, 15(3), 168–177.

    Article  Google Scholar 

  • Gupta, R. K., Kesari, A. N., Diwakar, S., Tyagi, A., Tandon, V., Chandra, R., & Wata, G. (2008). In vivo evaluation of anti-oxidant and anti-lipidemic potential of Annona squamosa aqueous extract in type 2 diabetic models. Journal of Ethnopharmacology, 118(1), 21–25.

    Article  PubMed  Google Scholar 

  • Harborne, J. B. (1989). General procedures and measurement of total phenolics. In J. B. Harborne (Ed.), Methods in plant biochemistry (Plant phenolics) (Vol. 1, pp. 1–28). Academic Press.

    Google Scholar 

  • Hegazy, G. A., Alnoury, A. M., & Gad, H. G. (2013). The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Medical Journal, 34(7), 727–733.

    PubMed  Google Scholar 

  • Ho, C. T. (1992). Phenolic compounds in food. In C. T. Ho, C. Y. Lee, & M. T. Hung (Eds.), Phenolic compounds in food and their effects on health (pp. 2–7).

    Chapter  Google Scholar 

  • Hou, S. Z., Chen, S. X., Huang, S., Jiang, D. X., Zhou, C. J., Chen, C. Q., Liang, Y. M., & Lai, X. P. (2011). The hypoglycemic activity of Lithocarpus polystachyus Rehd. Leaves in the experimental hyperglycemic rats. Journal of Ethnopharmacology, 138(1), 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Howden, R. (2013). Nrf2 and cardiovascular defense. Oxidative Medicine and Cellular Longevity, 2013, 104308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, C. S., Yin, M. C., & Chiu, L. C. (2011). Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49(9), 2189–2195.

    Article  CAS  PubMed  Google Scholar 

  • Huseini, H. F., Kianbakht, S., Hajiaghaee, R., & Dabaghian, F. H. (2012). Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Planta Medica, 78(04), 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. S., & Choi, H. (2008). Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytotherapy Research, 22(8), 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, B., & Narendhirakannan, R. T. (2019). Role of medicinal plants in the management of diabetes mellitus: A review. Biotech, 9(1), 4. https://doi.org/10.1007/s13205-018-1528-0

    Article  Google Scholar 

  • Jiao, Y., Wang, X., Jiang, X., Kong, F., Wang, S., & Yan, C. (2017). Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. Journal of Ethnopharmacology, 199, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, B., & Jini, D. (2013). Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease, 3(2), 93–102.

    Article  PubMed Central  Google Scholar 

  • Jung, J. Y., Lim, Y., & Moon, M. S. (2011). Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutrition & Metabolism, 8(1), 18. https://doi.org/10.1186/1743-7075-8-18

    Article  CAS  Google Scholar 

  • Kabir, A. U., Samad, M. B., Ahmed, A., Jahan, M. R., Akhter, F., Tasnim, J., Hasan, S. N., Sayfe, S. S., & Hannan, J. M. (2015). Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters. PLoS One, 10(2), e0116546.

    Article  PubMed Central  Google Scholar 

  • Kaur, R., & Arora, S. (2015). Alkaloids-important therapeutic secondary metabolites of plant origin. Journal of Critical Reviews, 2(3), 1–8.

    Google Scholar 

  • Khan, F., Sarker, M. M. R., Ming, L. C., Mohamed, I. N., Zhao, C., Sheikh, B. Y., Tsong, H. F., & Rashid, M. A. (2019). Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Frontiers in Pharmacology, 10, 1223. https://doi.org/10.3389/fphar.2019.01223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai, Y., Nakatani, S., Onodera, H., Nagatomo, A., Nishida, N., Matsuura, Y., Kobata, K., & Wada, M. (2015). Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro. Journal of Agricultural and Food Chemistry, 63(35), 7760–7764.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Kumar, V., & Prakash, O. (2011). Antidiabetic, hypolipidemic and histopathological analysis of Dillenia indica (L.) leaves extract on alloxan induced diabetic rats. Asian Pacific Journal of Tropical Medicine, 4(5), 347–352. https://doi.org/10.1016/S1995-7645(11)60101-6

    Article  PubMed  Google Scholar 

  • Kurup, S. B., & Mini, S. (2017). Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Journal of Food and Drug Analysis, 25(2), 360–368.

    Article  PubMed  Google Scholar 

  • Laha, S., & Paul, S. (2019). Gymnema sylvestre (Gurmar): A potent herb with anti-diabetic and antioxidant potential. The Pharmacogenomics Journal, 11(2), 201–206.

    CAS  Google Scholar 

  • Lattanzio, V. (2013). Phenolic compounds: Introduction. In K. G. Ramawat & J. M. Merillon (Eds.), Natural products. https://doi.org/10.1007/978-3-642-22144-6_57

    Chapter  Google Scholar 

  • Li, P. B., Lin, W. L., Wang, Y. G., Peng, W., Cai, X. Y., & Su, W. W. (2012). Antidiabetic activities of oligosaccharides of Ophiopogonis japonicas in experimental type 2 diabetic rats. International Journal of Biological Macromolecules, 51(5), 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Li, D., Huang, B., Chen, Y., Lu, X., & Wang, Y. (2013). Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. Journal of Ethnopharmacology, 149(1), 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Malviya, N., Jain, S., & Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica—Drug Research, 67(2), 113–118.

    Google Scholar 

  • Manukumar, H. M., Shiva Kumar, J., Chandrashekar, B., Raghava, S., & Umesha, S. (2016). Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Critical Reviews in Food Science and Nutrition, 57, 2712. https://doi.org/10.1080/10408398.2016.1143446

    Article  Google Scholar 

  • Mathew, L., & Babu, S. (2011). Phytotherapy in India: Transition of tradition to technology. Current Botany, 2(5), 1722.

    Google Scholar 

  • Maulik, S. K., & Talwar, K. K. (2012). Therapeutic potential of Terminalia Arjuna in cardiovascular disorders. American Journal of Cardiovascular Drugs, 12, 157–163.

    Article  PubMed  Google Scholar 

  • McCalla, G., Parshad, O., Brown, P. D., & Gardner, M. T. (2015). Beta cell regenerating potential of Azadirachta indica (neem) extract in diabetic rats. The West Indian Medical Journal, 65(1), 13–17. https://doi.org/10.7727/wimj.2014.224

    Article  CAS  PubMed  Google Scholar 

  • Meliani, N., Dib, M. E. A., Allali, H., & Tabti, B. (2011). Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine, 1(6), 468–471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra, N., Kumar, D., & Rizvi, S. I. (2016). Protective effect of Abelmoschus esculentus against alloxan-induced diabetes in Wistar strain rats. Journal of Dietary Supplements, 13(6), 634–646.

    Article  PubMed  Google Scholar 

  • Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., Paul, A., & Devasagayam, T. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163–173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanraj, R., & Sivasankar, S. (2014). Sweet potato (Ipomoea batatas [L.] lam)—A valuable medicinal food: A review. Journal of Medicinal Food, 17(7), 733–741.

    Article  PubMed  Google Scholar 

  • Mukherjee, P. K., Rai, S., Kumar, V., Mukherjee, K., Hylands, P. J., & Hider, R. C. (2007). Plants of Indian origin in drug discovery. Expert Opinion on Drug Discovery, 2(5), 633–657.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., & Sengupta, S. (2013). Indian medicinal plants known to contain intestinal glucosidase inhibitors also inhibit pancreatic lipase activity-an ideal situation for obesity control by herbal drugs. Indian Journal of Biotechnology, 12(1), 32–39.

    Google Scholar 

  • Ngugi, M. P., Njagi, J. M., Kibiti, C. M., & Miriti, P. M. (2012). Pharmacological Management of Diabetes Mellitus. Asian Journal of Biochemical and Pharmaceutical Research, 1(2), 375–381.

    Google Scholar 

  • Noor, A., Bansal, V. S., & Vijayalakshmi, M. A. (2013). Current update on anti-diabetic biomolecules from key traditional Indian medicinal plants. Current Science, 104(6), 721–727.

    CAS  Google Scholar 

  • Ojewole, J. A. (2002). Hypoglycaemic effect of Clausena anisata (Willd) hook methanolic root extract in rats. Journal of Ethnopharmacology, 81(2), 231–237.

    Article  PubMed  Google Scholar 

  • OmĂłbòwálĂ©, T. O., Oyagbemi, A. A., Ogunpolu, B. S., Ola-Davies, O. E., Olukunle, J. O., & Asenuga, E. R. (2019). Antihypertensive effect of polyphenol-rich fraction of Azadirachtaindica on Nω-Nitro-L-arginine methyl ester-induced hypertension and cardiorenal dysfunction. Drug Research, 69, 12–22.

    Article  PubMed  Google Scholar 

  • OmĂłbòwálĂ© TO, Oyagbemi, A. A., Alaba, B. A., Ola-Davies, O. E., Adejumobi, O. A., & Asenuga, E. R. (2018). Ameliorative effect of Azadirachtaindica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. Journal of Basic and Clinical Physiology and Pharmacology, 29, 155–164.

    Article  PubMed  Google Scholar 

  • Ozougwu, J. C. (2011). Anti-diabetic effects of Allium cepa (onions) aqueous extracts on alloxan-induced diabetic Rattus novergicus. Journal of Medicinal Plants Research, 5(7), 1134–1139. http://www.academicjournals.org/JMPR

    Google Scholar 

  • Ozturk, M. (2018). A comparative analysis of the medicinal plants used for diabetes mellitus in the traditional medicine in Turkey, Pakistan, and Malaysia. In M. Ozturk & K. Hakeem (Eds.), Plant and human health (Vol. 1). Springer. https://doi.org/10.1007/978-3-319-93997-1_11

    Chapter  Google Scholar 

  • Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy Reviews, 8(16), 73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer, P. A., Trivedi, P. C., Nigade, P. B., Ghaisas, M. M., & Deshpande, A. D. (2008). Cardioprotective effect of Azadirachtaindica A Juss on isoprenaline induced myocardial infarction in rats. International Journal of Cardiology, 126, 123–126.

    Article  PubMed  Google Scholar 

  • Ponnusamy, S., Ravindran, R., Zinjarde, S., Bhargava, S., & Kumar, A. R. (2011). Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evidence-based Complementary and Alternative Medicine, 2011, 515647.

    Article  PubMed  Google Scholar 

  • Poongothai, K., Ponmurugan, P., Ahmed, K. S., Kumar, B. S., & Sheriff, S. A. (2011). Antihyperglycemic and antioxidant effects of solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats. Asian Pacific Journal of Tropical Medicine, 4(10), 778–785.

    Article  CAS  PubMed  Google Scholar 

  • Prince, P. S. M., & Menon, V. P. (2003). Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytotherapy Research, 17(4), 410–413.

    Article  Google Scholar 

  • Quideau, S., Deffieux, D., Douat-Casassus, C., & Pouyse’gu L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie, International Edition, 50(3), 586–621.

    Article  CAS  PubMed  Google Scholar 

  • Ragavan, B., & Krishnakumari, S. (2006). Antidiabetic effect of T. arjuna bark extract in alloxan induced diabetic rats. Indian Journal of Clinical Biochemistry, 21(2), 123–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman, A., & Lau, C. (1996). Anti-diabetic properties and Phytochemistry Momordica charantia L. (Cucurbitaceae). Phytomedicine, 2(4), 349–362.

    Article  CAS  PubMed  Google Scholar 

  • Ramji, D. P., & Foka, P. (2002). CCAAT/enhancer-binding proteins: Structure, function and regulation. The Biochemical Journal, 365(Pt-3), 561–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabu, M. C., & Kuttan, R. (2004). Antidiabetic activity of aegle marmelos and its relationship with its antioxidant properties. Indian Journal of Physiology and Pharmacology, 48(1), 81–88.

    CAS  PubMed  Google Scholar 

  • Satoh, T., Igarashi, M., Yamada, S., Takahashi, N., & Watanabe, K. (2015). Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Journal of Ethnopharmacology, 161, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Sayyed, F. J., & Wadkar, G. H. (2018). Studies on in-vitro hypoglycemic effects of root bark of Caesalpinia bonducella. Annales Pharmaceutiques Françaises, 76(1), 44–49.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A. J., Gilani, A. H., & Hanif, H. M. (2014). Neem (Azadirachta indica) lowers blood pressure through a combination of Ca+ channel blocking and endothelium-dependent muscarinic receptors activation. International Journal of Pharmacology, 10, 418–428.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Bharti, S., Goyal, S., Arora, S., Nepal, S., Kishore, K., Joshi, S., Kumari, S., & Arya, D. S. (2011). Upregulation of PPARÎł by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-Streptozotocin induced type 2 diabetic rats. Phytotherapy Research, 25, 1457–1465.

    Article  PubMed  Google Scholar 

  • Sharma, B., Salunke, R., Balomajumder, C., Daniel, S., & Roy, P. (2010). Antidiabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. Journal of Ethnopharmacology, 127(2), 457–462. https://doi.org/10.1016/j.jep.2009.10.013

    Article  PubMed  Google Scholar 

  • Singh, L. W. (2011). Traditional medicinal plants of Manipur as anti-diabetics. Journal of Medicinal Plant Research: Planta Medica, 5(5), 677–687.

    Google Scholar 

  • Singh, P. K., Baxi, D., & Doshi, A. V. R. (2011). Antihyperglycaemic and renoprotective effect of Boerhaavia diffusa L. in experimental diabetic rats. Journal of Complementary and Integrative Medicine, 8(1), 1–20. https://doi.org/10.2202/1553-3840.1533

    Article  CAS  Google Scholar 

  • Srivastava, S., Lal, V. K., & Pant, K. K. (2012). Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. Phytopharmacology, 2, 115.

    Google Scholar 

  • Stefkov, G., Miova, B., Dinevska-Kjovkarovska, S., Stanoeva, J. P., Stefova, M., Petrusevska, G., & Kulevanova, S. (2014). Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes. Journal of Ethnopharmacology, 152(1), 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Stohs, S. J., & Ray, S. (2015). Anti-diabetic and anti-hyperlipidemic effects and safety of Salacia reticulata and related species. Phytotherapy Research, 29(7), 986–995. https://doi.org/10.1002/ptr.5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram, R., Naresh, R., Shanthi, P., & Sachdanandam, P. (2012). Antihyperglycemic effect of iridoid glucoside, isolated from the leaves of Vitex negundo in streptozotocin-induced diabetic rats with special reference to glycoprotein components. Phytomedicine, 19(3–4), 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Sunil, V., Shree, N., Venkataranganna, M. V., Bhonde, R. R., & Majumdar, M. (2017). The anti-diabetic and antiobesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomedicine & Pharmacotherapy, 89, 880–886.

    Article  CAS  Google Scholar 

  • Tadera, K., Minami, Y., Takamatsu, K., & Matsuoka, T. (2006). Inhibition of α-glucosidase and α- amylase by flavonoids. Journal of Nutritional Science and Vitaminology, 52(2), 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, A. T., Opeolu, O. O., Peter, R. F., & Yasser, H. A. A. W. (2014). Aqueous bark extracts of Terminalia arjuna stimulates insulin release, enhances insulin action and inhibits starch digestion and protein glycation in vitro. Austin Journal of Endocrinology and Diabetes, 1(1), 1001.

    Google Scholar 

  • Tiong, S. H., Looi, C. Y., Hazni, H., Arya, A., Paydar, M., & Wong, W. F. (2013). Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G.Don. Molecules, 18(8), 9770–9784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchegbu, N. N., & Ishiwu, C. N. (2016). Germinated pigeon pea (Cajanus cajan): A novel diet for lowering oxidative stress and hyperglycemia. Food Science & Nutrition, 4(5), 772–777.

    Article  CAS  Google Scholar 

  • Umamaheswari, S., Joseph, L. D., Srikanth, J., Lavanya, R., Chamundeeswari, D., & Reddy, C. U. (2010). Antidiabetic activity of a polyherbal formulation (DIABET). International Journal of Pharmacy and Pharmaceutical Sciences, 2, 1822.

    Google Scholar 

  • Venkatachalam, T., Kumar, V. K., Selvi, P. K., Maske, A. O., Anbarasan, V., & Kumar, P. S. (2011). Antidiabetic activity of Lantana camara Linn fruits in normal and streptozotocin-induced diabetic rats. Journal of Pharmacy Research, 4(5), 1550–1552.

    Google Scholar 

  • Venkatesh, S., Reddy, G. D., Reddy, Y. S. R., Sathyavathy, D., & Reddy, B. M. (2004). Effect of Helicteres isora root extracts on glucose tolerance in glucose-induced hyperglycemic rats. Fitoterapia, 75(3), 364–367.

    Article  PubMed  Google Scholar 

  • Wainstein, J., Ganz, T., Boaz, M., Bar Dayan, Y., Dolev, E., Kerem, Z., & Madar, Z. (2012). Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. Journal of Medicinal Food, 15(7), 605–610.

    Article  PubMed  Google Scholar 

  • WHO. (2022a). Global report on diabetes, Accessed July 15, 2022, from https://www.who.int/publications/i/item/9789241565257

  • WHO. (2022b). Health topics on diabetics, Accessed July, 15, 2022, from https://www.who.int/health-topics/diabetes#tab=tab_1

  • Wilcox, G. (2005). Insulin and insulin resistance. Clinical biochemist Reviews, 26(2), 19–39.

    PubMed  PubMed Central  Google Scholar 

  • Worldwide toll of diabetes. (2020). Diabetesatlas.org. Accessed August 7, 2020, from https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html

  • Yarmohammadi, F., Mehri, S., Najafi, N., Salar, A. S., & Hosseinzadeh, H. (2021). The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(3), 280–292.

    PubMed  PubMed Central  Google Scholar 

  • Zulcafli, A. S., Lim, C., Ling, A. P., Chye, S., & Koh, R. (2020). Antidiabetic potential of Syzygium sp.: An overview. The Yale Journal of Biology and Medicine, 93(2), 307–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuraini, A., Vadiveloo, T., Hidayat, M. T., Arifah, A., Sulaiman, M., & Somchit, M. (2006). Effects of neem (Azadirachta indica) leaf extracts on lipid and C-reactive protein concentrations in cholesterol-fed rats. Journal of Natural Remedies, 6, 109–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acharya, C.K., Das, B., Madhu, N.R., Sau, S., De, M., Sarkar, B. (2023). A Comprehensive Pharmacological Appraisal of Indian Traditional Medicinal Plants with Anti-diabetic Potential. In: Noor, R. (eds) Advances in Diabetes Research and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0027-3_8

Download citation

Publish with us

Policies and ethics