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Abstract
Purpose of Review This review addresses normal and pathologic functions of serum amyloid A (SAA), an enigmatic biomarker
of inflammation and protein precursor of AA amyloidosis, a life-threatening complication of chronic inflammation. SAA is a
small, highly evolutionarily conserved acute-phase protein whose plasma levels increase up to one thousand-fold in inflamma-
tion, infection, or after trauma. The advantage of this dramatic but transient increase is unclear, and the complex role of SAA in
immune response is intensely investigated. This review summarizes recent advances in our understanding of the structure-
function relationship of this intrinsically disordered protein, outlines its newly emerging beneficial roles in lipid transport and
inflammation control, and discusses factors that critically influence its misfolding in AA amyloidosis.
Recent Findings High-resolution structures of lipid-free SAA in crystals and fibrils have been determined by x-ray crystallog-
raphy and electron cryo-microscopy. Low-resolution structural studies of SAA-lipid complexes, together with biochemical, cell-
based, animal model, genetic, and clinical studies, have provided surprising new insights into a wide range of SAA functions. An
emerging vital role of SAA is lipid encapsulation to remove cell membrane debris from sites of injury. The structural basis for this
role has been proposed. The lysosomal origin of AA amyloidosis has solidified, and its molecular and cellular mechanisms have
emerged.
Summary Recent studies have revealed molecular underpinnings for understanding complex functions of this Cambrian protein
in lipid transport, immune response, and amyloid formation. These findings help guide the search for much-needed targeted
therapies to block the protein deposition in AA amyloidosis.

Keywords Inflammation control and immunity . Acute-phase response . Intrinsically disordered protein . Apolipoprotein
structure, dynamics, and function . Protein-lipid interactions . Systemic amyloidosis

Abbreviations
SAA Serum amyloid A
AA Amyloid A
HDL High-density lipoprotein
apo Apolipoprotein
NEFA Non-esterified fatty acid
POPC 1-Palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine
GAG Glycosaminoglycan

Introduction

Serum amyloid A (SAA) is a family of ~ 12 kDa acute-phase
proteins named after a disease. It is known not so much for its
beneficial role in host defense but rather as a biomarker of
inflammation [1•, 2] and protein precursor of amyloid A
(AA) amyloidosis, a life-threatening complication of chronic
inflammation [3•, 4]. Plasma levels of SAA are elevated in
bacterial infections such as tuberculosis, viral infections such
as hepatitis C, autoimmune disorders such as rheumatoid ar-
thritis, autoinflammatory disorders such as familial
Mediterranean fever, and metastatic cancers [1•, 2, 5, 6, 7•].
Clinical studies of viral infections in humans [5, 8, 9], includ-
ing COVID-19 [10], suggest that SAA is a sensitive biomark-
er for early diagnostics and treatment and a predictor of the
viral disease outcome. Mouse model studies report that SAA3
is a sensitive biomarker of excessive inflammation upon
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vaccination [11] and of macrophage infiltration of the adipose
tissue in obesity [12]. Whether SAA is not just a marker but
also an active participant in disease is intensely investigated,
and numerous, sometimes conflicting, functions have been
ascribed to this mysterious protein. The current consensus is
that SAA modulates adaptive and innate immunity and medi-
ates lipid transport during inflammation [1•, 2, 13].

Most circulating SAA binds plasma HDL, thereby mobi-
lizing cholesterol for cell repair [14] but contributing to im-
paired HDL functionality in inflammation [15–17]. Elevated
plasma SAA emerged as a causal risk factor for atherosclero-
sis [18–22, 23•]. While it is clear that chronically elevated
SAA contributes to the pathogenesis in AA amyloidosis and
atherosclerosis, beneficial effects of SAA are less well-under-
stood. Importantly, following acute infection, inflammation,
injury, or surgery, plasma levels of SAA increase over 24–
48 h from the basal level of 1–3 μg/ml up to 1–3 mg/ml and
then rapidly decline ([24, 25, 26•, 27] and references therein).
The benefits for survival of this dramatic but transient increase
are beginning to emerge from the research summarized below.

Overview of SAA Functions

SAA has been highly evolutionarily conserved for ~ 500 mil-
lion years, suggesting that it performs a vital function in sur-
viving injury and infection. Multiple functions have been re-
ported for SAA depending on its isoform, expression site,
lipidation status, and other factors. Of the four major SAA
isoforms, acute-phase SAA1 and SAA2 (in mice and men)
and SAA3 (in mice) are expressed in response to pro-
inflammatory cytokines such as IL1, IL6, and TNF-α, while
SAA4 is constitutively expressed [20, 24, 28, 29•, 30]. SAA is
secreted mainly by hepatocytes into plasma, where it revers-
ibly binds to HDL [29•, 31] but can also form transient SAA-
only lipoproteins that are distinct from HDL [32•]. SAA can
bind and activate HDL receptor SR-B1 and other cell scaven-
ger receptors such as LOX1 and RAGE that bind modified
lipoproteins; by doing so, SAA can reroute HDL transport
from the reverse cholesterol transport pathway, whereby ex-
cess cellular cholesterol is removed from the body via bile, to
cholesterol recycling (reviewed in [14]). SAA can also acti-
vate cell receptors involved in immune response, including
TLR2 and TLR4 (reviewed in [1•, 27]). In addition to hepatic
secretion, SAA is secreted locally by various cells, particularly
by macrophages at the inflammation sites where it promotes
cytokine production and immune cell recruitment (reviewed
in [33]). SAA was reported to either promote [34] or inhibit
macrophage differentiation into osteoclasts [35–37]; the latter
retains macrophages for host defense but promotes bone loss
in inflammation. Furthermore, SAA has been ascribed pro- or
antioxidant properties [38, 39] as well as pro-inflammatory
[16, 35, 40–43, 44•] or anti-inflammatory effects in various

systems [45–49]. Although some discrepancies stem from
bacterial contaminations and amino acid substitutions in com-
mercial preparations of recombinant hSAA1 [50•], others re-
flect structural and functional differences between lipid-free
and lipid-bound protein [38, 40] as well as isoform-specific
and context-dependent effects. Overall, SAA has emerged as a
homeostatic regulator of inflammation (reviewed in [1, 51]).

According to animal model studies, SAA induces protec-
tion against gram-negative bacteria and the lipopolysaccha-
ride challenge [45–47, 48•]. The protective mechanisms in-
volve SAA binding to lipopolysaccharides [46], binding and
opsonizing bacterial outer-membrane proteins, and
microsolubilizing the bacterial membrane [48•]. Antiviral ef-
fects of SAA are less well-explored; studies of hepatitis C
suggest that SAA binds to viral glycoproteins and blocks the
host cell entry via SR-B1 receptor (reviewed in [5, 6]).
Another beneficial function of SAA is transport of retinol, a
bioactive derivative of vitamin A that regulates innate intesti-
nal immunity [52•, 53•, 54].

In summary, two major interconnected SAA functions
have emerged: transport of lipids and lipophilic molecules
and signaling in innate and adaptive immunity to control in-
flammation. These and other functions and their underlying
genetic bases have been comprehensively reviewed elsewhere
[24, 25, 26•, 27, 33]. Other excellent reviews have addressed
the SAA-related pathologies in atherosclerosis [20, 21, 23•]
and AA amyloidosis in animals and humans, from the cellular
and molecular origins of the disease to its transmissibility,
clinical challenges, and therapeutic strategies [3•, 4, 55–57].
Here, we summarize recent progress in uncovering the struc-
tural basis for the evolutionarily conserved functions of SAA
and the factors critical for AA fibrillogenesis.

Functional Role of Intrinsic Structural
Disorder

Multiple functions of SAA stem from its ability to bind di-
verse ligands. These include cell receptors involved in host
defense and/or lipid metabolism (TLRs, RAGE, SR-B1,
CLA-1, LOX1, P2X7, FPR2), lipids (cholesterol, zwitterionic
and anionic phospholipids, lyso-phospholipids, non-esterified
fatty acids (NEFA)), small lipophilic molecules (retinol), bac-
terial outer-membrane proteins (OmpA), basal membrane pro-
teins (fibronectin, laminin), plasma proteins (cystatin), anions
(heparan sulfate, lipopolysaccharides), and cations (Ca2+), to
name a few ([26•, 58•] and references therein). These obser-
vations provoke the following question: how can a small pro-
tein of nearly 100 residues bind so many diverse ligands?

We posit that promiscuous ligand binding by SAA is facil-
itated by its pliable conformation [58•, 59]. Binding promis-
cuity is characteristic of other intrinsically disordered proteins
([60–62] and references therein). Such proteins or their
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domains have disordered secondary and/or tertiary structures
in the absence of bound ligands, but upon binding they can
fold to optimize interactions with each ligand individually.
For example, in solution at near-physiologic pH and temper-
ature, lipid-free murine SAA1 (mSAA1) is largely unfolded,
but upon lipid binding, it becomes 25–50% α-helical (as mea-
sured by circular dichroism) depending on the nature and the
amount of the lipid [63–67]. This structural change underlies
functional differences between lipid-free and lipid-associated
SAA ([32•] and references therein). Moreover, in the presence
of a protein-folding osmolyte trimethylamine N-oxide, the α-
helical content in mSAA1 in solution at 4 °C approaches ~
75% (unpublished data). This maximally folded protein state
probably resembles that depicted by x-ray crystallography.

X-ray Crystal Structures Reveal a Unique
Protein Fold with a Concave Hydrophobic
Surface

Remarkably for an intrinsically disordered protein, x-ray crys-
tal structures of SAA have been determined to nearly 2 Å
resolution by two independent teams. Four different crystal
structures have been reported to date: two of human SAA1
(hSAA1) [68••] and two of murine SAA3 (mSAA3) [51, 52•].
In these crystals, the protein molecules are packed as a dimer,
a dimer of dimers, a trimer, or a hexamer, forming different
lattice contacts in different unit cells. Nevertheless, all struc-
tures showed a very similar monomer fold, suggesting that
this fold has been evolutionally conserved [51] (Fig. 1).

SAAmonomer folds into a Y-shaped helix bundle contain-
ing α-helices h1–h4, followed by a 3/10 helix h’ and stabi-
lized by a flexible C-terminal tail [51, 68••] (Fig. 1A). Helices
h1 and h3 are predicted and observed to have a strong amphi-
pathic character with a large, well-demarcated hydrophobic
face [53•, 58•]. Similar amphipathic α-helices comprise the
lipid surface-binding motif in other apolipoproteins; however,
the helical packing in SAA is distinctly different.

Helix bundles in other globular proteins, including sol-
uble lipid-free apolipoproteins apoA-I and apoE, have hy-
drophobic interiors and polar surfaces that confer protein
solubility. These bundles readily open to expose the hy-
drophobic helical faces for binding lipids. In contrast, the
SAA helix bundle has a hydrophilic interior partially
filled with water [51] and a large hydrophobic surface
approximately 1 nm × 4 nm (Fig. 1C, in yellow). This
concave surface comprised the apolar faces of h1 and h3
packed at an angle of 43°; this angle defines the radius of
surface curvature, r ~ 4.5 nm, which is comparable with
the radius of HDL [58•]. Such a shape complementarity
combined with surface hydrophobicity suggests that HDL
fits neatly into the concave surface site of SAA (Fig. 1B).

Molecular Fold of SAA Has Been
Evolutionarily Conserved for Function

HDL binding at the concave surface formed by h1 and h3
helps fit together several pieces of the SAA puzzle. First, it
explains higher affinity of SAA for HDL (diameter d = 8–
12 nm) vis-à-vis larger lipoproteins, LDL (d = 20–24 nm),
and VLDL (d = 40–100 nm) ([58•] and references therein).
Second, it is consistent with the demonstrated role of h1 in
binding cholesterol [75] and HDL and h3 in binding retinol
([51, 52•, 68••] and references therein). Third, HDL binding at
this site blocks the amyloidogenic residue segments in h1 and
h3 that likely initiate SAA misfolding in amyloid [69, 76, 77]
(Fig. 1A, asterisks); this explains why binding to HDL pro-
tects SAA from forming amyloid at pH ~ 7 [66, 71•, 77].
Additional indirect support for HDL binding at this site comes
from the crystal structure of the SAA-retinol complex show-
ing a retinol molecule bound in the hydrophobic cavity
formed by h1 and h3 from three SAA molecules [53•].
Nevertheless, one can question the relevance of this well-
ordered crystal structure, which is ~ 75% α-helical, to the
functional protein conformation, which is largely unfolded
in ligand-free SAA in solution and is up to 50% helical in
lipid-bound SAA at 37 °C, pH ~ 7.

To explore functional conformations of SAA, hydrogen-
deuterium exchange mass spectrometry was combined with
circular dichroism spectroscopy and molecular dynamic sim-
ulations [70•]. Lipid-free mSAA1 in solution was compared
with ~ 10 nm particles reconstituted frommSAA1 and a mod-
el lipid POPC; nanoparticles such as these are often used as
models of nascent HDL [63, 64]. The results revealed that
most helical structure in lipid-free and in lipid-bound SAA is
confined to the h1–h3 segment (residues 1–69), while residue
segment 70–104 lacks a stable structure; h1 and h3 form the
lipid binding site wherein h3 is partially unstructured in solu-
tion but becomes helical upon lipid binding (Fig. 1F).
Remarkably, locations of the helical segments and the
interhelical linkers were similar in lipid-free SAA in solution,
SAA-POPC nanoparticles, and SAA crystals, despite large
differences in their α-helical content. Consequently, the crys-
tal structures depict key aspects of functional conformational
ensemble of SAA and likely represent its maximally folded
state [70•].

Importantly, amino acid sequence analysis in the SAA pro-
tein family indicates that the lipid-binding site is highly evo-
lutionarily conserved, from sea cucumber to human. In partic-
ular, the amphipathic character of h1 and h3 and the residues
essential for their packing against each other are 100% con-
served; this includes the GPGG motif that forms an unusually
tight well-ordered turn between h2 and h3 that defines the
curvature of the lipid-binding site [58•]. Importantly, the most
evolutionarily conserved regions, which are located in seg-
ments from h1 and h2–h3, show the greatest structural
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protection in SAA-POPC complexes, implicating these re-
gions in lipid binding (Fig. 1F). Consequently, the concave
hydrophobic surface in SAA has been evolutionarily con-
served to sequester lipids [70•].

SAA Acts as a Detergent and a Lipid
Scavenger

Reconstituted SAA-POPC particles vary in size (8–
18 nm) depending on the protein-to-lipid ratio and the
preparation technique [65]; 8–18 nm SAA-lipid particles
were also observed in cell-based studies [32•]. Even the
most stable 8–10 nm SAA-POPC particles isolated by gel
filtration formed a ladder on the native gel, suggesting
different numbers of SAA copies per particle [65].
Unlike HDL, such HDL-size SAA-POPC particles contain

more protein than lipid by weight, and the amount of lipid
in each particle is insufficient to form a bilayer [65].
Therefore, in contrast to nascent HDL or model
nanodisks, such protein-rich SAA-POPC nanoparticles
must be micelle-like, with the lipid acyl chains seques-
tered in the hydrophobic cavity formed by several protein
molecules. The size and shape of this cavity must vary
depending on the number of the SAA molecules per par-
ticle and their packing. Similarly, in the crystal structures,
the shape and size of the hydrophobic cavity formed by
several SAA molecules vary depending on their packing
[52•, 53•, 68••]. Such a variable hydrophobic cavity is
expected to bind a wide array of small hydrophobic or
amphipathic molecules and encapsulate them into nano-
particles (Fig. 1C).

This concept is supported by in vitro studies showing
that SAA can spontaneously solubilize various liposomes

a

b c

d

e

f

Fig. 1 Current understanding of the structure-function relationship in
SAA. (A) Ribbon diagram showing the x-ray crystal structure of
hSAA1 [68••]; mSAA3 forms a very similar fold [52•]. The α-helices
h1–h4 are rainbow-colored blue to red from the N- to the C-terminus. The
GPGG motif in h2–h3 linker, which forms a tight interhelical turn that
defines the curvature of the hydrophobic surface formed by h1 and h3
[58•], is marked; * indicates segments that are predicted to initialize
hSAA1 misfolding in amyloid (residues 2–9, 53–55, and 67–70 in h1
and h3) [69]. (B) Cartoon showing SAA bound to HDL via h1 and h3.
The h1–h3 segment is mostly α-helical in lipid-bound state at pH ~ 7,
while the rest of the molecule lacks a stable structure [70•]. (C) Cartoon
representation of an SAA-only lipoprotein. Four protein copies in a
space-filling representation are shown and color-coded (yellow,
hydrophobic; gray, hydrophilic). Variable hydrophobic cavity formed
by helices h1 and h3 from several SAA copies can sequester diverse
lipids and lipophilic molecules (e.g., retinol [53•]). Other SAA sites can
bind other ligands (marked 1 and 2), potentially facilitating their
interactions and signaling in inflammation [58•]. We hypothesize that
such signaling via SAA-containing lipoprotein hubs may occur during
acute-phase response when SAA levels are high. Upon resolution of
inflammation, the SAA levels drop and these dynamic networks
dissociate. (D) Lipid-free SAA, which is intrinsically disordered in

solution circa pH 7, is rapidly cleared from circulation [28], yet if high
SAA levels persist, it can accumulate in lysosomes and form AA deposits
[3•, 71•]. N- and C-terminal truncations by the lysosomal protease
cathepsin B probably contribute to this process [72, 73]; X marks a
major site of the C-terminal truncation. (E) Electron micrographs of
negatively stained SAA-POPC complexes. At near-neutral pH, SAA
forms lipoprotein nanoparticles. However, at near-lysosomal pH, SAA
oligomers disrupt lipid vesicles and cell membranes and form amyloid
[71•, 74]. (F)Well-ordered protein region in SAA-containing lipoproteins
is highly evolutionarily conserved. Protein structural protection in SAA-
POPC nanoparticles was measured by hydrogen-deuterium exchange
mass spectrometry at several time points; darker colors indicate better-
ordered regions. Bar graph shows amino acid conservation throughout
evolution; taller lighter bars indicate more conserved residues (for details
see [70•]). Boxed region contains h2–h3 segment that is most
evolutionarily conserved and is most well-ordered in lipid-bound SAA;
this region contains the GPGG motif in the h2–h3 linker that defines the
curvature of the concave lipid binding site formed by h1 and h3; the
amphipathic character of h1 and h3 is also evolutionarily conserved
[58•]. Consequently, the ability of SAA to encapsulate lipids into
nanoparticles has been highly evolutionarily conserved and probably
reflects its vital primordial function.
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and convert them into nanoparticles at pH ~ 7 [63, 66, 67]
(Fig. 1E, top). This includes single- and multilamellar
vesicles of zwitterionic and anionic phospholipids and
their mixtures with cholesterol, oxidized lipids, lyso-phos-
pholipids, NEFA, etc. [38, 39, 63, 65–67, 77].

Such a detergent-like activity comes in handy in vivo. One
example is bactericidal activity of SAA against E. coli and
S. aureus, which was observed in vitro and in vivo in a mouse
model of cutaneous infection [48•]. This activity stems from
the ability of SAA to solubilize bacterial cell membranes and
anionic liposomes to form micelles or small vesicles at pH
5.2–6.4, which encompasses acidic conditions of the skin.
The lipid-binding N-terminal region of SAA was essential
for this activity [48•]. The detergent-like activity of SAA can
also be important in the oxidative and hydrolytic environment
at the inflammation sites. Lipid peroxides, lyso-phospho-
lipids, and NEFA generated at these sites must be rapidly
sequestered to avoid lipotoxicity. However, the levels of albu-
min, which normally sequesters most circulating NEFA and
lyso-phospholipids, decrease in acute inflammation.
Moreover, albumin’s affinity for NEFA decreases at acidic
pH at the inflammation sites ([78•] and references therein),
causing potential accumulation of toxic lipids. Can SAA com-
pensate for albumin deficiency and protect the inflammation
sites from lipotoxicity?

The answer is suggested by the effects of SAA on the
activity of another ancient acute-phase reactant, secretory
phospholipase A2 (sPLA2). Apolipoproteins such as
apoA-I have long been known to stimulate various lipases
by altering the physical state of lipid [79], but the levels
of these proteins decrease in acute inflammation while
SAA sharply increases. In vivo, SAA and sPLA2 are up-
regulated dramatically and concomitantly, both systemi-
cally and locally at the sites of injury [40], suggesting a
potential synergy. In vitro studies support this idea and
show that SAA plays dual role in augmenting the sPLA2

reaction. First, SAA solubilizes phospholipids to generate
nanoparticles that provide substrates for sPLA2; second,
SAA sequesters its water-insoluble products, lyso-phos-
pholipids, and NEFA, thereby removing the rate-limiting
step of lipolysis [78•]. Moreover, unlike albumin, the
binding affinity of SAA for NEFA remains invariant in
a broad pH range, surpassing that of albumin at acidic
conditions found at the inflammation sites [78•], while
the local SAA levels at these sites increase even more
than its systemic levels. Together, the results suggest that
SAA can help compensate for albumin’s deficiency and
substantially contribute to removal of toxic lipid from the
inflammation sites. Such an efficient removal of cell
membrane debris is necessary for tissue healing,
supporting the idea that acute-phase response serves to
isolate the pathogenic species and minimize tissue dam-
age [1•].

Hypothetical Functions of SAA-Containing
Lipoproteins in Inflammation

Are lipoproteins that have SAA as their major protein found
in vivo? Earlier mouse model studies detected such lipopro-
teins during lipopolysaccharide-induced inflammation; these
HDL-size particles contained SAA as their sole protein and
had higher density and, hence, higher protein content than
HDL [80]. Spontaneous formation of micelle-like SAA-lipid
nanoparticles was also observed in mice infected by S. aureus
[48•]. Furthermore, several cell-based studies reported forma-
tion of SAA-only lipoproteins [32, 81, 82]. In some systems,
this formation depended on the activity of lipid transporters
such as ABCA1, the ATP-driven transporter in the plasma
membrane that is necessary to generate HDL [32•, 82]. In
other studies, SAA-only nanoparticles formed even in the ab-
sence of active lipid transport [81].

Since ATP-driven lipid transport is impaired in dead cells, the
ability of SAA to encapsulate membrane lipids in an ATP-
independent process has important implications for removing
membrane debris from dead cells. We hypothesize that SAA-
only lipoproteins can form in an energy-independent process at
the sites of injury where SAA concentration is particularly high;
they sequester membrane lipids from dead cells and incorporate
them into nanoparticles. SAA-only nanoparticles are probably
short-lived compared with HDL, as suggested by much faster
clearance of plasma SAA [28] andmuch lower structural stability
of free SAA and SAA-containing lipoproteins as compared with
their apoA-I-containing counterparts [32•, 38, 63, 65]. Like other
lipoproteins, these transient SAA-containing nanoparticles are
expected to be heterogeneous in size and composition; they prob-
ably vary in the numbers of SAA copies per particle, carry di-
verse lipids and their degradation and oxidation products, and
undergo dynamic remodeling by sPLA2 and other factors. Future
in vivo studies will test these ideas.

What is the destination of the SAA-containing lipopro-
teins? One pathway involves cell scavenger receptors that
bind such lipoproteins. Examples include LOX1, a receptor
for oxidized lipoproteins; RAGE, a receptor for advanced
glycation end products; and other scavenger receptors
expressed on the surface of various cells, particularly macro-
phages. SAA can bind and activate these receptors, promoting
the uptake of lipids and SAA by macrophages and other cells.
This mechanismwas proposed to redirect HDL during inflam-
mation and recycle “good cholesterol” for cell repair [14];
however, it can also contribute to the pro-atherogenic lipid
accumulation in the arterial macrophages. Another pro-
atherogenic pathway involves enhanced retention of SAA-
containing lipoproteins by arterial glycosaminoglycans
(GAGs) ([16] and references therein). Ultimately, SAA un-
dergoes lysosomal degradation; however, when SAA levels
are persistently high, its lysosomal accumulation can lead to
AA amyloidosis (described below).
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Although molecular details of SAA interactions with cell
receptors andGAGs are unknown, they probably involve flex-
ible C-terminal region of SAA ([58•] and references therein).
In particular, an acidic patch formed by h2 and h4 on the
surface of hSAA1 or mSAA1 was proposed to interact with
the basic apex implicated in ligand binding by SR-B1 and
homologous receptors such as LOX1, RAGE, and CD36
[65], whereas basic residues from the C-terminal tail of SAA
were inferred to bind GAGs [83].

One intriguing hypothesis stems from the ligand binding
promiscuity of SAA and the presence of multiple SAA copies
on the same lipoprotein particle [64, 65]. Each SAA copy
binds lipids via the h1–h3 site, while other sites can bind other
ligands (Fig. 1C). Such binding can potentially bridge several
ligands on the same lipoprotein, facilitating their interactions.
If so, SAA-containing lipoproteins may serve as hubs facili-
tating dynamic interactions in signaling networks during in-
flammation [58•]. The ability to act as protein hubs has been
ascribed to other intrinsically disordered proteins that are also
promiscuous ligand binders [60–62].What distinguishes SAA
is its ability to form multivalent lipoprotein hubs. This hypo-
thetical scenario is in line with the proposed role of HDL as
platforms for binding various proteins with diverse functions
([84] and references therein) as well as with the emerging role
of SAA in controlling the onset and the resolution of inflam-
mation [1•, 26•, 49].

SAA Misfolding in AA Amyloidosis and Its Key
Effectors

AA amyloidosis results from persistently elevated SAA and
affects < 5% of patients with chronic inflammation [3•, 4]. In
this life-threatening disease, N- and/or C-terminally truncated
SAA1 fragments, termed AA, form extracellular fibrillary de-
posits in kidney and other organs (liver, spleen, intestine, skin,
heart), causing organ damage ([72••, 85] and references there-
in). AA amyloidosis used to be the major form of human
amyloid disease and a major cause of death in tuberculosis
patients [3•], but with improved control of infection and in-
flammation, this disease became relatively rare. In animals
(mammals and birds), AA amyloidosis remains the major
form of amyloid disease [56] that can be transmitted in a
prion-like manner by a seeding mechanism [55, 56]. No
animal-to-human or human-to-human transmission has been
reported to date.

The mechanism of organ targeting in this and other system-
ic amyloidoses is unclear and probably involves local proteo-
lytic environment and GAGs, which are ubiquitous constitu-
ents of amyloid deposits [86]. Moreover, it is unclear what
protease(s) generate AA fragments in vivo and whether the
proteolytic cleavage precedes or follows fibrillogenesis. The
common glomerular variant of the disease has been associated

with 1–76 fragment, but other C-terminal truncations and an
occasional N-terminal Arg1 truncation have also been report-
ed [3•]. Mass spectrometry analysis of renal AA deposits from
several patients revealed that all fragments lacked Arg1 [85].
Fibrils from all patients had similar morphology consistent
with the molecular structure of human AA fibril (fragment
2–69) determined by electron cryo-microscopy to 2.7 Å reso-
lution [72••]. This structure, together with the structure of
murine AA fragment, showed a complete conversion of the
native all-α into an all-β fold, with parallel in-register twisted
cross-β-sheets forming the fibril core [72••]. Fibril morphol-
ogy for all AA patients was similar, suggesting a similar mo-
lecular structure [85, 87]. Importantly, the fibril structure of
human AA fragment was incompatible with the presence of
Arg1, suggesting that its truncation precedes fibrillogenesis.
Notably, SAA cleavage by cathepsin B can account for the
observed N- and C-terminally truncated AA fragments, impli-
cating this lysosomal protease in AA amyloidosis [73].
Furthermore, most C-terminal cleavage sites were found in
residue segment 64–67 [85], which is helical (protected) in
lipoprotein-bound SAA but is unfolded (unprotected) in
lipid-free SAA [70•] (Fig. 1D). This suggests that release from
lipoproteins precedes the proteolytic cleavage of SAA and
generation of AA fragments that misfold and form fibrillary
deposits in vivo.

This scenario is consistent with in vitro finding that the C-
terminal truncation augments SAA fibrillogenesis in vitro [76,
88]. This finding is not surprising as the amyloidogenic se-
quence propensity resides mainly in h1 and h3 from residue
segment 1–76 ([69, 88] and references therein). Similarly,
truncation of Arg1 is expected to increase the amyloid-
forming propensity of the residue segment 1–7 of hSAA1,
RSFFSFL, which is particularly amyloidogenic [69].
“Sticky” amyloidogenic segments such as this are usually se-
questered in the hydrophobic core of globular proteins but
become exposed upon proteolysis [3•]. In contrast, in lipid-
free SAA, this and other amyloidogenic segments are exposed
on the h1–h3 surface but are sequestered upon lipid binding
[58•, 70•]. This explains why binding to plasma or model
HDL protects SAA against fibrillogenesis at pH ~ 7, as shown
in cell-based and in biophysical studies [66, 69, 71•].
However, like in other proteins, the effects of lipids on SAA
fibrillogenesis depend on the lipid composition, protein-to-
lipid ratio, solvent ionic conditions, and other factors; e.g. in
HDL-size particles at near-neutral pH, POPC is protective
while phosphatidylethanolamine is not [66].

A distinct feature of SAA is that at near-lysosomal pH, at
which it cannot form lipoprotein nanoparticles, the role of
lipids in amyloid formation drastically changes. Circa pH
4.3, free mSAA1 forms unusually stable proteolysis-resistant
oligomers resembling amyloid-enhancing factors, which lyse
lipid bilayers and undergo a lipid-induced α-helix to β-sheet
transition culminating in fibrillogenesis [74•] (Fig. 1E,
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bottom). Such soluble oligomers were proposed to accumulate
in lysosomes, disrupt cellular membranes, and initiate extra-
cellular amyloid deposition. This mechanism complements
cell-based studies showing that mSAA1 accumulation in ly-
sosomes of monocytes and macrophages causes membrane
disruption, lysosomal leakage, and cell death, while the pre-
formed amyloid seeds the extracellular fibrils [71•, 89•]. This
mechanism is also consistent with electron tomography of
cell-derived AA deposits showing vesicular lipid inclusions
probably originating from the amyloid-forming dead cells
[90•]. Together, these findings solidify the lysosomal origin
of AA amyloidosis and help establish its cellular and molec-
ular underpinnings.

Therapeutic Targeting of AA Amyloidosis

The major therapies for AA amyloidosis target the underlying
inflammatory disease and include antibacterial, anti-inflam-
matory, and immunosuppressive drugs; dialysis and kidney
transplant are used to treat advanced renal damage. The drugs
reduce SAA levels, which reduces the amyloid load and re-
verses the disease. However, factors other than amyloid load
can also contribute to clinical symptoms [91], and the existing
treatments are not always efficient [92]. For example, anti-
inflammatory approaches are unsuited for patients with idio-
pathic AA amyloidosis without the underlying chronic inflam-
mation [3•, 93], necessitating the development of new
therapies.

Some therapeutic approaches target the protein misfolding
pathway. This includes interactions with GAGs, particularly
heparan sulfate, that dissociate SAA fromHDL and accelerate
fibrillogenesis [83, 94]. Sulfonated or sulfated GAG mimetics
were proposed to block SAA-GAG interact ions.
Unfortunately, a sulfonated small molecule drug eprodisate
failed to show efficiency in phase-3 clinical trials and was
discontinued in 2016 (ClinicalTrials.gov Identifier:
NCT01215747).

Other approaches propose to block amyloidogenic seg-
ments of SAA by using complementary peptides [95] or
lipids. In particular, decreasing triglyceride levels in the core
of HDL helps retain SAA and other apolipoproteins on the
HDL surface and thereby retard fibrillogenesis [96]. If so,
existing triglyceride-lowering therapies hold promise for
treating AA amyloidosis, including cases without the under-
lying inflammation. Conversely, increased plasma triglycer-
ides are expected to augment AA amyloidosis. This idea is
consistent with clinical studies reporting a direct correlation
between idiopathic AA amyloidosis and obesity, a condition
wherein plasma triglycerides are elevated [93, 97].

Another proposed approach uses a cell-based system to
identify nontoxic inhibitors of SAA fibrillogenesis regardless
of specific mechanisms of action [98]. This approach targets

the protein quality control cellular machinery and has a high
screening capability, which helps select candidates for future
animal model studies.

Conclusions

Major strides have been made in our understanding of the
structure-function relationship in this enigmatic intrinsically
disordered protein. X-ray crystal structures of hSAA1 and
mSAA3, which were determined to ~ 2 Å resolution in 2014
[52•, 68••] and 2019 for SAA-retinol complex [53•], were
truly eye-opening. They revealed a unique “inside-out” α-
helical fold, with a large concave hydrophobic surface that
provides a binding site for HDL, retinol, and various lipids
and their degradation products. Lipids are encapsulated in a
hydrophobic cavity which comprised several SAA molecules
that self-assemble into lipoprotein nanoparticles (Fig. 1). The
SAA fold has been highly evolutionarily conserved since the
Cambrian period, long before the emergence of HDL, sug-
gesting that the primordial role of SAA does not involve
HDL binding. Rather, it probably involves sequestration and
transport of lipids, such as cell membrane debris, to avoid
lipotoxicity at the sites of injury and facilitate tissue healing
[78•]. If verified in vivo, this role explains how the rapid and
massive generation of SAA hours after the onset of acute
injury, infection, or inflammation has benefitted the host sur-
vival throughout evolution.

Numerous other functions in homeostatic control of in-
flammation have been attributed to SAA, and their molecular
underpinnings are being elucidated. The pro-atherogenic role
of elevated SAA has been firmly established [20–22, 23•].
The lysosomal origin of AA amyloidosis has solidified, and
key steps in this pathogenic pathway have been revealed, from
lysosomal accumulation of SAA and its cleavage (probably
by cathepsin B) and misfolding to cell membrane disruption
and extracellular amyloid deposition [71•, 74] to cell-to-cell
transfer [89•]. High-resolution fibril structures of human and
murine AA fragments were determined by electron cryo-
microscopy [72••], revealing key role of the N-terminal trun-
cation in hSAA. These and other findings guide the search of
new targeted therapies for AA amyloidosis.

In addition, numerous recent clinical studies highlight the
role of SAA as a sensitive biomarker of COVID-19 infection
that contributes to the severity of COVID-19 disease in dia-
betes and obesity [10, 99–103]. Studies such as these may
help explain why diabetic and obese patients are at an in-
creased risk of severe COVID-19 disease.
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