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Abstract
Purpose of Review  To highlight that body fat depletion (the Yin paradigm) with glucose-lowering treatments (the Yang 
paradigm) are associated with metabolic benefits for patients with type 2 diabetes mellitus (T2DM).
Recent Findings  The sodium-glucose cotransporter-2 inhibitor-mediated sodium/glucose deprivation can directly improve 
glycemic control and kidney outcome in patients with T2DM. The glucose deprivation might also promote systemic fatty 
acid β-oxidation to deplete ectopic/visceral fat and thereby contribute to the prevention of cardiovascular diseases. As with 
metabolic surgery, bioengineered incretin-based medications with potent anorexigenic and insulinotropic efficacy can sig-
nificantly reduce blood glucose as well as body weight (especially in the ectopic/visceral fat depots). The latter effects could 
be a key contributor to their cardiovascular-renal protective effects.
Summary  In addition to a healthy diet, the newer glucose-lowering medications, with body fat reduction effects, should be 
prioritized when treating patients with T2DM, especially for those with established cardiovascular/renal risks or diseases.
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Introduction

A body of evidence indicates that excessive adiposity, espe-
cially in the visceral (adipose tissue) and ectopic (non-adi-
pose tissue) sites, are strongly associated with an increased 
risk of developing type 2 diabetes mellitus (T2DM) [1] and 
its various complications [2, 3]. It has long been recognized 
that metabolic dysfunction-associated steatotic liver disease 
(MASLD) is a definitive risk factor for the development and 
progression of T2DM, whereas improvement/resolution of 
MASLD can significantly reduce the risk [4]. The liver plays 
a critical role in maintaining glucose homeostasis. Immune 
cell infiltration occurs concurrently as ectopic fat, i.e., tria-
cylglycerols (TG) accumulates in hepatocytes [5]. This state 

of chronic inflammation can suppress peroxisome prolifer-
ator-activated receptor γ (PPARγ) and impair the conver-
sion of fatty acids (FA) to TG [6], which could result in 
excess intracellular FA blocking insulin signaling pathways 
to potentiate hepatic insulin resistance [7, 8]. Secondary to 
pancreatic fat accumulation, excess intracellular FA could 
likewise interrupt signaling pathways involved in glucose 
sensing and insulin secretion [9]. This is consistent with 
observations that pancreatic fat content is positively cor-
related with glucose intolerance; patients with T2DM have 
higher amounts of pancreatic fat compared with those with-
out diabetes [10]. Hypothalamic fat accumulation accompa-
nied with chronic inflammation could also occur in T2DM 
and obesity [11, 12]. As plasma FA levels rise before meals 
and fall with feeding/glucose influx [13], hypothalamic FA 
might serve as another strategic intracellular signal in regu-
lating energy homeostasis, i.e., stimulating appetite when 
plasma/hypothalamic FA is high and promoting satiety once 
the level falls [14]. This state of chronic inflammation might 
also lead to excess intracellular FA favoring appetite over 
satiety and thereby aggravate adiposity and contribute to the 
adverse metabolic outcomes [15]. Therefore, this “ectopic 
fat accumulation → (chronic inflammation-mediated PPARγ 
suppression) → excess intracellular FA elicited-dysfunction” 
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might be pivotal to the development and progression of 
T2DM.

Besides accumulating ectopic fat, the heart and kidneys 
(where micro/macrovascular complications of T2DM mostly 
occur [16, 17]) also possess “genuine” adipose tissue (e.g., 
epi/pericardial fat and peri/intra renal fat, which is classi-
fied into visceral adipose tissue) [18]. Clinical studies have 
confirmed that patients with T2DM have relatively higher 
proportions of epicardial, pericardial, and renal fat [19, 20]. 
Excess FA released from these visceral depots may enter 
adjacent cells/structures such as cardiomyocytes (including 
the conduction system), renal tubules, and coronary/renal 
endothelial cells, disrupt multiple cellular signaling, and 
elicit metabolic (dysfunction)-associated organ damage [21] 
including cardiomyopathy, arrhythmias (e.g., atrial fibril-
lation), coronary artery diseases [22], hypertension, and 
chronic kidney disease [20].

It is worth noting that targeting the downstream effect 
of ectopic/visceral fat accumulation, i.e., chronic/meta-
inflammation, might favor PPARγ-associated adiposity and 
bring no apparent metabolic benefits to patients with T2DM 
[23]. Therefore, if the Yang paradigm for treating T2DM 
focused on lowering blood glucose (treatments in the white 
background or denoted in white), the Yin paradigm—body 
fat depletion (by way of body weight reduction) (treatments 
in the black background or denoted in black), must never be 
neglected (Fig. 1). Weight management has always been des-
ignated as one of the most important components in primary 
care for T2DM. The Standards of Care in Diabetes-2023 
(SCD2023) published by the American Diabetes Association 

recommends that most people with T2DM are supported 
with lifestyle modifications (including nutrition, physical 
activity, and behavioral therapy) with the aim of achieving 
and maintaining ≥ 5% weight loss; the goal can be set higher 
(up to 15%) when newer glucose-lowering medications with 
body weight reduction effects are included in the treatment 
regimen [24].

In this review, glucose-lowering treatments with body 
weight reduction effects are broadly categorized into non-
pharmaceutical and pharmaceutical approaches. We essen-
tially summarize their glucose-lowering efficacies and con-
template on how they can deplete body fat to determine the 
metabolic outcomes of patients with T2DM.

Diet

Diet has always been an important component in the treat-
ment of T2DM. A recently published systematic review 
and meta-analysis of randomized controlled trials (RCT) 
[25] shows that compared with usual diet, energy-restricted 
diet increased rate of T2DM remission (hemoglobin A1c 
(HbA1c) < 6.5% with no antidiabetic medication) at a 
2-year follow-up by 10 more per 100 patients (data from the 
LOOK AHEAD study [26] and the DiRECT [27, 28] were 
both included). The dose–response analysis indicates that 
at 6 months, each 500 kcal/day decrease in energy intake 
resulted in clinically meaningful reductions in HbA1c 
(MD (mean difference) =  − 0.82%). However, the glucose-
lowering efficacy attenuated as the intervention progressed 
and became negligible after 12 months [25]. Though not 
energy-restricted, (compared with control (e.g., low-fat diet), 
low (< 130 g/day), or very low (< 50 g/day) carbohydrate/
ketogenic diet could slightly increase T2DM remission rate 
(by 5 more per 100 patients at a 6-month follow-up); achieve 
a higher reduction in HbA1c (MD =  − 0.47% and − 0.23% 
at 6 and 12 months) [29]. However, the safety of a low-
carbohydrate or very low-carbohydrate diet is still a major 
concern, especially for patients with relative insulin defi-
ciency (rather than insulin resistance/hyperinsulinemia) in 
T2DM [30].

Energy-restricted diet has limited efficacy in reducing 
body fat. The LOOK AHEAD study demonstrates that across 
an 8-year time interval, the difference of weight reduction 
between the control and intensive lifestyle intervention (i.e., 
low-energy diet combined with increased physical exercise) 
groups was only modest as evidenced by − 3.5% (of the base-
line body weight) vs. − 6.0% [31]; the ratio of reduction in 
fat to lean body mass was approximately 2 in the interven-
tion group, weight regain in this group was nearly 100% fat 
body mass [32]. This may partly explain why the intensive 
lifestyle intervention was not associated with lower risks 
for major adverse cardiovascular events (MACE) defined as 

Fig. 1   The Yin and Yang paradigms for treating type 2 diabetes and 
improving metabolic outcomes
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nonfatal stroke, nonfatal myocardial infarction, and cardio-
vascular death) or other cardiovascular diseases including 
hospitalization for heart failure or angina and atrial fibrilla-
tion in patients with T2DM [33, 34]. Further evidence indi-
cates that maintainers (in both groups) who kept off ≥ 75% 
of weight loss achieved the greatest cardiovascular benefit 
[35]. A series of post hoc analyses also suggest that there 
could be a negative correlation between the magnitude of 
weight reduction (especially in visceral fat depot) and the 
incidence of cardiovascular disease (especially for heart fail-
ure) [36–38]. Therefore, body weight/fat reduction is the key 
in improving the cardiovascular outcomes in patients with 
T2DM. Dose–response analysis of body fat reduction and 
prevention of adverse metabolic events might be needed to 
further understand these effects. Besides body composition, 
whether the dynamics of FA could determine cardiovascular 
risks for patients with T2DM is another interesting research 
area to be explored [39].

Metabolic Surgery

Metabolic/bariatric surgery is not only the most effective 
approach for weight reduction but obesity-related comor-
bidities and quality of life can also be significantly improved 
after surgery [40]. The SCD2023 recommends that meta-
bolic surgery should be considered to treat T2DM in adult 
patients with class III obesity (categorized according to 
body mass index (BMI) and ethnicity) or class II obesity 
who receive nonsurgical treatment but do not achieve 
durable weight reduction and improvement in comorbidi-
ties [24]. Compared with nonsurgical treatment, metabolic 
surgery was associated with a greater reduction in HbA1c 
(MD =  − 3.1% at endpoint) and rates of T2DM remission 
(odds ratio (OR) = 4.23) [41].

A body composition study showed that the depletion ratio 
of fat to lean body mass was 3.3 in (baseline BMI = 43.4 kg/
m2) patients with total weight reduction < 50% after meta-
bolic surgery; this ratio could rise to 5.3 in (baseline BMI 
= 41.4 kg/m2) patients achieved higher weight reduction 
(≥ 50%) [42]. Long-term follow-up (up to 14 years) indicates 
in (baseline BMI = 46.6 kg/m2) patients receiving metabolic 
surgery liver fat was significantly reduced as evidenced by 
a 9% increase in liver-to-spleen density; there can be a posi-
tive correlation between liver fat reduction and incidence of 
post-surgical T2DM remission [43]. Estimated proportions 
of fat depletion in subcutaneous, visceral, and epicardial 
depots after metabolic surgery were 20%, 42%, and 30% 
[43]. This extensive body fat depletion, especially in the 
ectopic and visceral depots, may contribute to the prevention 
of major complications of T2DM [43]. Observational studies 
suggest that MACE was significantly lower (OR = 0.49) in 
patients with T2DM receiving metabolic surgery [44]. Risks 

for heart failure and atrial fibrillation may also be reduced, 
though the results were less conclusive [44]. Furthermore, 
preclinical and clinical studies suggest that metabolic sur-
gery may prevent the progression of chronic kidney disease 
and improve renal outcomes in T2DM [45].

Metabolic surgery might remodel neural signaling in the 
gut-brain axis to exaggerate postprandial insulin secretion 
(under a relatively inadequate food/glucose stimulation) [46, 
47]. In some patients, this is excessive and leads to hyperin-
sulinemic hypoglycemia syndrome after Roux-en-Y gastric 
bypass [47]. The exaggerated (portal) insulin secretion could 
not only improve glycemic control but also increase very 
low-density lipoprotein (VLDL) output to deplete liver TG/
fat [43, 48]. Theoretically, lipoprotein (LPL) affinity for 
VLDL-TG hydrolysis is lower in subcutaneous than visceral 
depots; hence, the increased VLDL-TG output might also 
shift fat distribution from visceral to subcutaneous depot and 
thereby decrease the ratio of visceral to subcutaneous fat 
volume (R) [49]. The post-surgical R could be calculated as 

presurgicalvisceralfatvolume∕1−postsurgicalvisceralfatdepletion∕2

presurgicalsubcutaneousfatvolume∕3−postsurgicalsubcutaneousfatdepletion∕4
 . As 

1 and 3 and the sum of 2 and 4 are constant in a bariatric 
surgery patient, when the R decreases, the proportion of fat 
depletion in the visceral depot (i.e., 2/1) will, on the con-
trary, increase. Taken together, compared with “negative 
energy balance matched with decreased insulin secretion” 
i.e., diet, it might be this discrepancy that “negative energy 
balance matched with increased insulin secretion and VLDL 
output” makes metabolic surgery much more efficient in 
visceral/ectopic fat depletion and (hence) beneficial in 
T2DM remission and prevention of cardiovascular/renal 
complications. Further kinetic models of the substrate 
(VLDL-TG) competition between subcutaneous and visceral 
LPL are needed to confirm this hypothesis.

Pharmacology

Glycemic control with some particular classes of antidia-
betic medications including thiazolidinediones (TZD), sul-
fonylureas, and insulin analogs is at the expense of body 
fat gain [50]. Although there has been some evidence that 
pioglitazone could significantly reduce MACE in patients 
with T2DM [51], this is not the case for all TZD, especially 
for rosiglitazone, which increased risk for myocardial infarc-
tion but not for cardiovascular or all-cause mortality [52]. 
Moreover, TZD are generally associated with a high risk 
for the development of congestive heart failure [53]. These 
unfavorable cardiovascular outcomes might be attributed to 
the TZD-induced predominant subcutaneous (rather than 
visceral) fat accumulation [54]. As a consequence, excess 
subcutaneous fat/FA can likewise elicit systemic endothe-
lial dysfunction, injure the peripheral nervous system, and 
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increase risks for developing/deteriorating macro- and 
microvascular complications [55, 56]. Therefore, those 
newer glucose-lowering medications with weight reduction 
effects have become the most recommended second-line and, 
in some cases, first-line antidiabetic treatment [57].

Sodium‑Glucose Cotransporter‑2 Inhibitor 
(SGLT‑2I)

The SGLT-2I blocks glucose and sodium reabsorption in 
the renal proximal tubules and thereby promotes their excre-
tion into urine [58], hence this is the only class of glucose-
lowering medications that “genuinely” deplete (rather than 
relocate) blood glucose. A meta-analysis of 66 RCT indi-
cated that the glucose-lowering efficacy of SGLT-2I was 
persistent with significant HbA1c reduction at week 12 
(MD =  − 0.63%), 24 (MD =  − 0.63%), 52 (MD =  − 0.66%), 
and 104 (MD =  − 0.60%) (compared with either placebo/
other antidiabetic treatments) [59]. Major cardiovascular 
outcome trials (CVOT) of SGLT-2I suggest that the glucose-
lowering efficacy is maintained (MD =  − 0.36 to − 0.58%) 
for at least 3 to 4 years [60–62].

The SGLT-2I-mediated glucose deprivation could reduce 
body weight/fat [58, 63]. Clinical evidence demonstrated 
that the SGLT-2I could exert progressive BMI reduction 
at 12 (MD =  − 0.52 kg/m2), 24 (MD =  − 0.73 kg/m2), 52 
(− 0.93 kg/m2), and 104 (− 1.22 kg/m2) weeks [59]. Further 
body composition studies showed that within the duration 
of treatment, lean body mass remained stable [64], while fat 
depletion in subcutaneous, visceral, and liver/ectopic sites 
were all significant [65]. Specifically, the SGLT-2I could 
deplete liver fat via glucose deprivation (as de novo lipo-
genesis accounts for one-fourth of hepatic FA content in 
MASLD) [66] and glucose deprivation-boosted hepatic FA 
β-oxidation. The improved hepatic insulin sensitivity could 
be another important contributor to the persistent glucose-
lowering efficacy of SGLT-2I.

The SCD2023 recommends that a SGLT-2I should be 
included in the treatment regimen for patients with T2DM 
and established cardiovascular/renal disease or risks 
[67], as the major CVOTs indicated that risks of MACE 
(HR = 0.89) and cardiovascular death or hospitalization for 
heart failure (HR = 0.77) were all significantly reduced in 
patients with T2DM receiving SGLT-2I treatment [68••], 
though the SGLT-2I is associated with a statistically but not 
clinically significant increase in total plasma cholesterol 
(MD = 0.003 mmol/L) [69] and an insignificant depletion 
in epicardial fat [65]. Moreover, a pooled analysis of 31 
RCT (including all up-to-date CVOT) demonstrated that 
compared with placebo or no therapy, the SGLT-2I could 
also significantly reduce the incidence of total (risk ratio 
(RR) = 0.83) and serious (RR = 0.75) atrial fibrillation 

[70]. To achieve such extensive cardiovascular benefits, 
in addition to reducing plasma glucose, intravascular vol-
ume, and weight, the SGLT-2I may specifically boost FA 
β-oxidation in cardiomyocytes (for they have rather high 
energy demands) to alleviate myocardial lipotoxicity [71]. 
The improved myocardial (including conduction) function 
may in turn initiate metabolic reprogramming in the cardiac 
microenvironment and thereby correct coronary endothelial 
dysfunction [72].

The SGLT-2I is also considered as nephroprotective, 
since it can increase sodium delivery to the distal tubules, 
inhibit tubuloglomerular feedback to constrict the afferent 
arteriole, and reduce intraglomerular pressure [73]. Major 
renal outcome trials (with median follow-up ranging from 
1.3 to 2.6 years) confirmed that the SGLT-2I significantly 
improved the composite renal outcomes (including wors-
ening of renal function, end-stage renal disease and renal 
death) with a hazard ratio (HR) of 0.60 [74••]. Similarly, 
real-world evidence (with a mean follow-up of 1.2 years) 
demonstrated that (compared with other antidiabetic medica-
tions) initiation of the SGLT-2I was associated with reduced 
risk of composite renal event (HR = 0.49) [75].

Incretin‑Based Medications

Glucagon‑Like Peptide 1 Receptor Agonist 
(GLP‑1RA)

GLP-1 is a glucose-dependent insulinotropic hormone 
secreted from intestinal L cells [76]. A body of evidence 
suggests that GLP-1 is capable of preventing adverse meta-
bolic outcomes via regulating gastrointestinal, neuromuscu-
lar, endocrine (including adipose tissue), and even immune 
systems [76]. Considering the short half-life (only 2 min) of 
endogenous GLP-1 (due to dipeptidyl peptidase 4 (DPP-4) 
degradation), a range of DPP-4 resistant-GLP-1RA (with 
extended half-life), most of which are in subcutaneous 
(sc) rather than oral (po) peptide formulation, have been 
developed for the treatment of metabolic disorders includ-
ing T2DM and obesity [77]. Major CVOT (with a mean 
follow-up of 2.1 and 5.4 years) demonstrated that compared 
with placebo, long-acting GLP-1A—dulaglutide (1.5 mg qw 
sc) and semaglutide (1.0 mg qw sc) significantly reduced 
HbA1c (MD =  − 0.60%, − 1.40%) in patients with T2DM 
(compared with placebo) [78, 79]. The SCD2023 recom-
mends that a GLP-1RA is preferred to insulin (when pos-
sible) for patients with T2DM [67]. A meta-analysis of 18 
RCTs (with a mean follow-up of 16 to 58 weeks) further 
confirmed that compared with basal insulin, the long-
acting GLP-1RA were associated with a greater reduc-
tion in HbA1c (MD =  − 0.27%), whereas the short-acting 
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GLP-1RA (exenatide 10 μg bid sc) did not perform signifi-
cantly better [80].

With respect to the anorexigenic effect of the GLP-1RA 
[76], data from the major CVOT indicated that long-acting 
GLP-1RA—liraglutide (1.8 mg qd sc) and semaglutide 
(1.0 mg qw sc) were associated with 3% and 5% of body 
weight reduction from baseline (BMI = 32.5 and 32.9 kg/
m2) in patients receiving the treatment for 3.5 and 2.1 years, 
respectively [79, 81]. Higher doses of liraglutide (3 mg qd 
sc) and semaglutide (2.4 mg qd sc) have been approved for 
the treatment of obesity [82, 83]. Moreover, a recent pub-
lished phase 3 RCT suggests that semaglutide (50 mg qd 
po) is as effective as semaglutide (2.4 mg qw sc) in reduc-
ing body weight among patients with overweight or obesity 
[84]. As part of the clinical development, these doses have 
also been tested in patients with T2DM with higher BMI 
(37.0 and 35.7 kg/m2) and resulted in reduction of 6% and 
10% of body weight from baseline (vs. 4.7% for liraglutide 
1.8 mg and 7% for semaglutide 1 mg) in 56 and 68 weeks, 
respectively [85, 86]. Taken together, there seem to be posi-
tive correlations between baseline BMI/dose of GLP-1RA 
and body weight reduction in patients with T2DM receiv-
ing GLP-1RA treatment. Further body composition studies 
demonstrated that for patients with overweight or obesity 
(BMI = 37.8 kg/m2) receiving semaglutide (2.4 mg qw sc), 
body weight reduction from baseline and depletion ratio of 
fat to lean body mass were 15% and 1.5 in 68 weeks; esti-
mated proportion of fat depletion in the visceral depot was 
44% [82]. The remarkable ectopic/visceral fat depletion, 
which might be attributed to the anorexigenic and insuli-
notropic characteristics of these incretin-based medications 
(as discussed in Metabolic surgery), can lead to favorable 
metabolic consequences including improved hepatic insu-
lin sensitivity/glycemic control and cardiovascular/renal 
outcomes. The SCD2023 recommends that for patients 
with T2DM and established cardiovascular/renal disease 
or risks, a GLP-1RA should be considered as part of the 
treatment regimen [67]. The major CVOT also demonstrated 
that the GLP-1RA was associated with significant reduc-
tions in MACE (HR = 0.88), hospitalization for heart failure 
(HR = 0.91), and the composite kidney outcome (HR = 0.83) 
in patients with T2DM [87••].

Dual Glucose‑Dependent Insulinotropic Polypeptide 
(GIP)/GLP‑1RA

As GLP-1, GIP is also a glucose-dependent insulinotropic 
hormone secreted from intestinal K cells and associated 
with favorable outcomes [76]. With the aim to boost the 
metabolic benefits of the incretins, by engineering GLP-1 
activity into the GIP sequence, a dual RA, tirzepatide (with 
a unique pharmacological profile e.g., higher binding affin-
ity for GIP than GLP-1 receptor) has been developed [88]. 

The SURPASS 1 to 5 trials indicated that (with a mean 
follow-up of 26 to 104 weeks) tirzepatide (5, 10, 15 mg qw 
sc) was associated with a significant reduction in HbA1c 
with MD ranging from − 1.69 to − 2.58% in patients with 
T2DM. Among these patients, 66.0 to 86.0% reached an 
HbA1c ≤ 6.5% [89•]. The weight reduction efficacy of tirze-
patide seemed to be dose–response dependent as evidenced 
by 5%, 13%, 8%, and 13% of body weight reduction from 
baseline (BMI = 32.6 and 34.2 kg/m2) for 5 and 15 mg in 
26 and 40 weeks; further follow-up suggested that the effi-
cacy could be even stronger as a plateau in body weight 
was not reached with treatment durations shorter than 
52 weeks [89•]. Body composition studies demonstrated 
that in patients with overweight or obesity (BMI = 37.9 kg/
m2) receiving tirzepatide (5, 10, 15 mg), body weight reduc-
tion from baseline was 15%, 20%, 21% and mean depletion 
ratio (for all doses) of fat to lean body mass was 3 after 72 
weeks [90]; in patients with T2DM with BMI ranging from 
33.1 to 34.5 kg/m2, tirzepatide (5, 10, 15 mg) was associ-
ated with 23 to 38% and 21 to 29% of fat depletion in liver 
and visceral depots after 52 weeks [91]. Though results of 
the SURPASS CVOT (a dedicated cardiovascular outcomes 
trial for Tirzepatide) are due to report in October 2024, 
the pre-specified data from SURPASS 1 to 5 and J-mono 
suggest that tirzepatide (mean assigned dose: 9.9 mg qw) 
might potentially decrease the risks of MACE and all-cause 
mortality in T2DM patients (as evidenced by HR of 0.80, 
although this did not reach statistical significance) [92].

Triple GIP/GLP‑1/Glucagon RA

Glucagon is a peptide hormone secreted from pancreatic 
α-cells. It is a strong stimulator of hepatic glucose output 
[93]. In a phase 2 trial (with a mean follow-up of 24 weeks), 
the glucagon receptor antagonist LY2409021 (10, 20 mg qd 
sc) significantly reduced HbA1c (MD =  − 0.78%, − 0.92%) in 
patients with T2DM (compared with placebo). However, the 
glucose-lowering efficacy tailed off with higher doses (30 mg, 
60 mg qd) [94]. This is consistent with the observation that the 
same compound (100 mg) given as a single dose, demonstrated 
no improvement in glucose tolerance in patients with T2DM 
[95]. Mechanistic studies further confirmed that though being 
glucotropic, glucagon is also a potent insulinotropic hormone 
with antidiabetic potential [96]. A triple GIP-GLP-1/gluca-
gon RA with a GIP backbone and GLP-1/glucagon activities, 
retatrutide, has thus been developed to maximize the metabolic 
benefits [97]. With respect to the glucose-lowering efficacy, 
retatrutide (doses escalating from 2/3 mg to 12 mg qw sc) 
significantly reduced HbA1c (MD =  − 1.20%, − 2.02%, − 2.1
6% in 12, 24, 36 weeks) (vs. − 0.60%, − 1.41%, − 1.36% for 
dulaglutide (1.5 mg qw)) in patients with T2DM [98, 99•]. 
Retatrutide was also associated with 10% and 17% of reduction 
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from baseline (BMI = 30.3, 36.0 kg/m2) in 12 and 36 weeks 
(vs. 0.04%, 2% for dulaglutide) [98, 99•]. 

Combined GLP‑1RA and Amylin Analog

Amylin is a peptide hormone co-secreted with insulin from 
pancreatic β-cells. With respect to glycemic control, amylin 
could delay gastric emptying, flatten postprandial glucose 
spikes, and thereby reduce HbA1c [100]. A meta-analysis 
of 4 RCT (with a mean follow-up of 16 to 52 weeks) showed 
that in addition to basal insulin, the amylin analog, pramlin-
tide (120 to 150 μg bid/tid sc) significantly reduced HbA1c 
(MD =  − 0.33%) in patients with T2DM (compared with pla-
cebo or other antidiabetic medications) [101]. A recently 
published phase 2 RCT demonstrated that the amylin analog, 
cagrilintide (2.4 mg qw sc) was associated with HbA1c 
reduction (MD =  − 0.90%) in 32 weeks; there was a further 
reduction (MD =  − 1.30% with statistical significance) when 
given concurrently with semaglutide (2.4 mg qw sc) [102•]. 

The combined pramlintide and basal insulin could 
significantly reduce 2% of body weight from baseline 
(BMI = 33.9 kg/m2) in patients with T2DM [101]. Cagrilin-
tide (2.4 mg) was associated with a significant reduction of 
8% from baseline (BMI = 34.3 kg/m2); a further significant 
8% of reduction was also observed in the combination of 
cagrilintide and semaglutide [102•].

Future Development

To improve patient compliance, nonpeptide/small molecule 
GLP-1 RA in oral formulation has also been in development. 
A recently published phase 2 RCT (with a mean follow-
up of 16 weeks) demonstrated that compared with placebo, 
danuglipron (129 mg bid po) remarkably reduced HbA1c 
(MD =  − 1.16%) and 4% of body weight from baseline 
(BMI = 33.3 kg/m2) in patients with T2DM [103•]. Moreo-
ver, orforglipron (doses escalating from 2 to 40 mg qd po) 
was associated with a significant 12.6% and 14.7% of body 
weight reduction from baseline (BMI = 37.8 kg/m2) at week 
26 and week 36 in patients with overweight or obesity [104].

Other GLP-1-based medications, for instance, a recently 
developed GIP receptor antagonist conjugated with a GLP-1 
peptide (with extended half-life) demonstrated superior met-
abolic benefits in animal studies and hence may become a 
therapeutic approach for T2DM and its complications in the 
future [105].

Conclusions

Reduction of dietary glucose load can improve glycemic 
control in patients with T2DM. However, compared with 
metabolic surgery, an energy-restricted diet is associated 

with much less metabolic benefits due to their limited effi-
cacy to reduce body fat. Given the strict eligibility criteria 
for metabolic surgery, newer pharmaceutical antidiabetic 
approaches, especially those incretin-based medications, 
with remarkable reduction effects on blood glucose as well 
as body fat (in ectopic/visceral depots), should be prioritized 
in treating T2DM as they have been proved metabolic ben-
eficial in preventing/ameliorating cardiovascular and renal 
complications. In conclusion, to improve the metabolic out-
comes of patients with T2DM, the Yin paradigm—body fat 
depletion must merge with the Yang paradigm—glucose-
lowering treatments (Fig. 1).
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