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ABSTRACT - Pseudorandom generators (suggested and developed by Blum and Micali and 
Yao) are efficient deterministic programs that expand a randomly selected k -bit seed into a much 
longer pseudorandom bit sequence which is indistinguishable in polynomial time from an 
(equally long) sequence of unbiased coin tosses. Pseudorandom generators are known to exist 
assuming the existence of functions that cannot be efficiently inverted on the distributions 
induced by applying the function iteratively polynomially many times. This sufficient condition 
is also a necessary one, but it seems difficult to check whether particular functions, assumed to be 
one-way, are also one-way on their iterates. This raises the fundamental question whether the 
mere existence of one-way functions suffices for the construction of pseudorandom generators. 

In this paper we present progress towards resolving this question. We consider regular 
functions, in which every image of a k -bit string has the same number of preimages of length k .  
We show that if a regular function is one-way then pseudorandom generators do exist. In particu- 
lar, assuming the intractability of general factoring, we can now prove that pseudorandom genera- 
tors do exist. Other applications are the construction of pseudorandom generators based on the 
conjectured intractability of decoding random linear codes, and on the assumed average case dif- 
ficulty of combinatonal problems as subset-sum. 

1. INTRODUCTION 
In recent years randomness has become a central notion in the theory of computa- 

tion. It is heavily used in the design of sequential, parallel and distributed algorithms, 
and is of course crucial to cryptography. Once so frequently used, randomness itself has 
become a resource, and economizing on the amount of randomness required for an appli- 
cation has become a natural concern. It is in this light that the notion of pseudorandom 
generators was first suggested and the following fundamental result was derived: the 
number of coin tosses used in any practical application (modeled by a polynomial time 
computation) can be decreased to an arbitrarily small power of the input length. 

The key to the above informal statement is the notion of a pseudorandom generator 
suggested and developed by Blum and Micali [BM] and Yao [Y] .  A pseudorandom gen- 
eruror is a deterministic polynomial time algorithm which expands short seeds into 
longer bit sequences, such that the output ensemble is polynomially-indistinguishable 
from the uniform probability distribution. More specifically, the generator (denoted G ) 
expands a k-bit seed into a longer, say 2k-bit, sequence so that for every polynomial time 
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algorithm (distinguishing test) T, any constant c >O, and sufficiently large k 

lProb[T(G(Xt))=l]  -Prob(T(Xx)= l  I I 5 k - ,  

where X,,, is a random variable assuming as values smngs of length m , with uniform pro- 
bability distribution. It follows that the strings output by a pseudorandom generator G 
can substitute the unbiased coin tosses used by any polynomial time algorithm A ,  without 
changing the behavior of algorithm A in any noticeable fashion. This yields an 
equivalent polynomial time algorithm, A', which randomly selects a seed, uses G to 
expand it to the desired amount, and then runs A using the output of the generator as the 
random source required by A .  The theory of pseudorandomness was further developed to 
deal with function generators and permutation generators and additional important appli- 
cations to cryptography have emerged [GGM, LR]. The existence of such seemingly 
stronger generators was reduced to the existence of pseudorandom (smng) generators. 

In light of their practical and theoretical value, constructing pseudorandom genera- 
tors and investigating the possibility of such constructions is of major importance. A 
necessary condition for the existence of pseudorandom generators is the existence of 
one-way functions (since the generator itself constitutes a one-way function). However, 
it is not known whether this necessary condition is sufficient. Instead, stronger versions 
of the one-wayness condition were shown to be sufficient. Before reviewing these 
results, let us recall the definition of a one-way function. 

Definition 1: A function f : { 0,l) * + { 0.1 ) * is called one-way if it is polynomial time com- 
putable, but not "polynomial time invertible". Namely, there exists a constant c >O such 
that for any probabilistic polynomial time algorithm A ,  and sufficiently large k 

Prob[Acf (x ) , l * )  4 f - ' c f ( x ) I ]  > k + ,  (*) 

where the probability is taken over all x 's of length k and the internal coin tosses of A ,  
with uniform probability distribution. 
(Remark: The role of 1' in the above definition is to allow algorithm A to run for time 
polynomial in the length of the preimage it is supposed to find. Otherwise, any function 
which shrinks the input by more than a polynomial amount would be considered one- 
way .) 

1.1. Previous Results 

The first pseudorandom generator was constructed and proved valid, by Blum and 
Micali, under the assumption that the discrete logarithm problem is intractable on a non- 
negligible fraction of the instances [BM]. In other words, it was assumed that exponen- 
tiation modulo a prime (i.e. the 1-1 mapping of the mple ( p , g , x )  to the triple 
(p , g , g x  modp), where p is prime and g is a primitive element in Zi) is one-way. Assum- 
ing the intractability of factoring integers of the form N = p  q , where p and q are primes 
and p = 3 mod4, a simple pseudorandom generator exists [BBS, ACGS] (*I. Under this 
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assumption the permutation, defined over the quadratic residues by modular squaring, is 
one-way. 

Yao has presented a much more general condition which suffices for the existence 
of pseudorandom generators; namely, the existence of one-way permutations Ty] ('? 

Levin has weakened Yao's condition, presenting a necessary and sufficient condi- 
tion for the existence of pseudorandom generators IJ]. Levin's condition, hereafter 
referred to as one-way on iterates, can be derived from Definition 1 by substituting the 
following line instead of line (*) 

( v i , I < i  < k c + ' )  Prob[ A ~ f ( i ) ( x ) , I t )  4 f-lv(i)(x))] > k - ~ ,  

where f ( ' ) ( x )  denotes f iteratively applied i times on x .  (As before the probability is 
taken uniformly over all x ' s  of length k .) Clearly, any one-way permutation is one-way 
on its iterates. It is also easy to use any pseudorandom generator in order to construct a 
function which satisfies Levin's condition. 

Levin's condition for the construction of pseudorandom generators is somewhat 
cumbersome. In particular, it seems hard to test the plausibility of the assumption that a 
particular function is one-way on its iterates. Furthermore, it is an open quesrion whether 
Levin's condition is equivalenr to the mere existence of one-way funcnons. 

1.2. Our Results 
In this paper we present progress towards resolving the above open problem. We 

consider "regular" functions, in which every element in the range has the same number of 
preimages. More formally, we use the following definition. 

Definition 2: A function f is called regular if there is a function m() such that for every 
n and for everyx E (0,lj" the cardinality off-'Cf(x>) A {O,l)" is m(n).  

Clearly, every 1-1 function is regular (with m ( n ) =  I ,  Vn).  Our main result is 

Main Theorem: r f  there exists a regular one-way function then there exists a pseudoran- 
dom generator. 

A special case of interest is of 1-1 one-way functions. The sufficiency of these 
functions for constructing pseudorandom generators does not follow from previous 
works. In particular, Yao's result concerning one-way permutations does not extend to 
1-1 one-way functions. 

1) A slightly more general result, concerning integers with all prime divisors congruent to 3 mod 4, also holds 
[CCC]. 
2) In fact, Yao's condition is slightly more general. He requires thatf is 1-1 and that there exists a probabil- 
ity ensemble which is invariant unda the application of f  and that inverting f is "hard on the average" 
when the input is chosen according to n. 
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Regularity appears to be a simpler condition than the intractability of inverting on 
the function’s iterates. Furthermore, many natural functions (e.g. squaring modulo an 
integer) are regular and thus, using our result, a pseudorandom generator can be con- 
structed assuming that any of these functions is one-way. In particular, if factoring is 
weakly intractable (i.e. every polynomial time factoring algorithm fails on a non- 
negligible fraction of the integers) then pseudorandom generators do exist. This result 
was not known before.. (It was only known that the intractability of factoring a special 
subset of the integers implies the existence of a pseudorandom generator.) Using our 
results, we can construct pseudorandom generators based on the (widely believed) con- 
jecture that decoding random linear codes is intractable, and on the assumed average case 
difficulty of combinatorial problems as subset-sum. 

The main theorem is proved essentially by transforming any given regular one-way 
function into a function that is one-way on its iterates (and then applying Levin’s result 

It is interesting to note that not every (regular) one-way function is “one-way on its 
iterates”. To emphasis this point, we show (in Appendix A) that from a (regular) one- 
way function we can construct a (regular) one-way function which is easy to invert on the 
dismbution obtained by applying the function twice. The novelity of this work is in 
presenting a direct way to con~truct a function which is one-way on its iteratesfrom any 
regular one-way function (which is not necessarily one-way on its iterates). 

&I>. 

1.3. Subsequent Results 
Recent results of Impagliazzo, Levin and Luby extend our results in two directions 

[ILL]. First, they generalize the regularity condition deriving a necessary and sufficient 
condition for the existence of pseudorandom generators. The new condition requires that 
the function f is one-way on a distribution induced by a function h ,  while the distribu- 
tion induced b y ~ f o h  has almost the same entropy as the distribution induced by h .  
Second, they show that using non-uniform definitions of one-way functions and pseu- 
dorandom generator, yields their equivalence. 

2. MAINRESULT 

2.0. Preliminaries 
In the sequel we make use of the following definition of strongly one-way function. 

(When referring to Definition 1, we shall call the function weak one-way or simply one- 

Definition 3: A polynomial time computable function f :  (O,l)*+[O,l}* is called 
strongly one-way if for any probabilistic polynomial time algorithm A ,  any positive con- 
stant c , and sufficiently large k ,  

way). 
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where the probability is taken over all x 's  of length k and the internal coin tosses of A , 
with uniform probability distribution. 
Theorem (Yao [m): There exists a strong one-way function if and only if there exists a 
(weak) one-way function. Furthermore, given a one-way function, a strong one can be 
constructed. 

It is important to note that Yao's construction preserves the regularity of the func- 
tion. Thus, we may assume without loss of generality, that we are given a function f 
which is strongly one-way and regular. 

For the sake of simplicity, we assume f is fengrh presenting (i.e. V x  , I f  ( x )  I = Ix I ). 
Our results hold also without this assumption (see subsection 2.6). 
Notation: For a finite set S , the notation s E S means that the element s is randomly 
selected from the set S with uniform probability distribution. 

2.1. Levin's Criterion: A Modified Version 
The proof of the Main Theorem relies on the transformation of a function which is 

one-way and regular into a function which satisfies a variant of Levin's condition (i.e., 
being one-way on iterates). The modified condition, relating to functions which leave the 
first part of their argument unchanged, requires that the function is one-way on a number 
of iterates which exceeds the length of the second part of its argument. (Levin has 
required that the function is one-way on a number of iterations exceeding the length of 
the entire argument.) A precise statement can be found in Lemma 1 bellow. Before prov- 
ing the sufficiency of the modified condition for constructing pseudorandom generators, 
we recall the basic ideas behind Levin's condition. 

Levin's condition is motivated by Blum-Micali scheme for the construction of pseu- 
dorandom generators [BM]. This scheme uses two basic elements. The first, a (strongly) 
one-way function f, and the second, a boolean predicate b(.) called a "hard-core" of the 
function f . (Roughly speaking, a Boolean function b (.) is a hard-core predicate o f f ,  if 
it is polynomial time computable, but no polynomial time probabilistic algorithm given 
f ( x ) ,  for randomly selected x ,  can compute the value of b ( x )  with a probability signifi- 
cantly better than U 2 ) .  A pseudorandom generator G is constructed in the following 
way. On input x (the seed), the generator G applies iteratively the one-way function f (.) 
on x for t (= poly ( Ix I )) times (i.e. f ( ~ ) . f ( ~ ) ( x ) ,  . . . , f ( ' ) ( x ) ) .  In each application off , the 
predicate b( f ( ' ) (x ) )  is computed and the resultant bit is output by the generator. That is, G 
outputs a string of length t .  Blum and Micali show that the above sequence of bits is 
unpredictable when presented in reverse order (i.e. b ( f ( ' ) (x ) )  first and b ( f ( ' ) ( x ) )  last), pro- 
vided that the boolean function b( . )  is a hard-core predicate on the dismbution induced 
by the iterates f ( i ) ,  05 i I t  . The unpredictability of the sequence is proved by showing 
that an algorithm which succeeds to predict the next bit of the sequence with probability 
better than one half can be transformed into an algorithm for "brealung" the hard-core of 
the function f. Finally applying Yao's Theorem [Y] that unpredictable sequences are 
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pseudorandom we get that the above G is indeed a pseudorandom generator. 
The hard part of the proof of Levin’s Theorem (namely, that the existence of a func- 

tion f being one-way on iterates implies the existence of pseudorandom generators) is in 
showing that the existence of a one-way function implies the existence of a hard-core 
predicate on the iterates of another function. (3) In order to construct this bit, the original 
function f is modified into a new one-way function f ’, and the hard-core predicate b (-) is 
constructed with respect to the new f’. The function f ’ ( x )  consists of the parallel appli- 
cation of the originalf on many copies, i.e. f ’ ( x l  , . . . ~ = ) = ~ ( x  l),....f(x~)). Thexi’s are of 
equal size, say n, and Levin’s construction uses a number of copies s ( n )  which is any 
function that grows faster than c .logn, for any constant c . For constructing a pseudoran- 
dom generator, following Blum-Micali scheme, f’ should be iterated on a seed of length 
k for at least k + l  iterations (4! Recall that the seed has the form (xI, . . . , xscn$. Thus in 
order to have f ’ which is one-way for n .s (n )+I iterations, we need that the original func- 
tion f is one-way for this number of iterations when applied to the substrings xi of length 
n . Let ~ ( n )  be a function which is an upper bound on the function n .s (n )+1. For simpli- 
city we may assume z (n )=n2 .  Thus, we get that in order to construct a pseudorandom 
generator it suffices to have a function f which is strongly one-way for z(n) iterations 
when applied to smngs of length n. This is Levin’s sufficient (and necessary) condition 
for the existence of pseudorandom generators. (Observe that Levin’s condition as 
presented in section 1.1 refers to weak one-way functions, and then a greater number of 
iterations is required). 

In our work we use the concept of “one-wayness on iterates“ in a slightly modified 
way. We consider a function F (..-) defined as 

F(h  ;s> = (h  Fo(h J>> (*I 
That is, F applies a function F ,  on its arguments and concatenates the first argument h to 
this result. The advantage of considering this kind of functions is that in order to con- 
struct a pseudorandom generator based on this function, it suffices to require that the 
function F is strongly one-way for T( Ix I ) iterations, instead of the T( I h I +  Ix I ) iterations 
required by the straightforward application of Levin’s result. The way we prove the suf- 
ficiency of this condition is as follows. First, we use Levin’s modification of the function 
F into a new function F’( h ’ , x ’ )  for which a hard-core predicate does exist. (This is the 
same as the transformation from f to f’ in the above description of Levin’s consmc- 
tion). An important and simple observation is that F‘ preserves the form (*). Then, the 

3) This part of the proof can be avoided using a recent result of Goldreich and Levin [GL]. This result stares 
that any f u n c t i o n f ’ ( x , r ) = ( f ( x ) j ) .  where Ix I=lr I ,  has a hard-core predicate for the uniform distribution 
on r and any dkuibution on x for whichf is one-way. 
4) A notable property of pseudorandom generators is that in order to have a generator which expands swings 
to any polynomial length it suffices to commct a generator which expands strings of length k into s h g s  of 
length k + l .  This generator can be iteratively applied for plynomially many times without harming the pseu- 
dorandomess of its output [GrMJ. 
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function F’ is applied by the generator G for at least Ix’l+l iterations. Note that F’ 
remains one-way for all these iterations, as the original F ( h j )  is one-way for ~ ( l x  1)  
iterates, and then Ix’l+l pseudorandom bits can be computed by using the hard-core of 
F’. The output of G will be the smng h’ concatenated with the above Ix’l+l pseudoran- 
dom bits. That is G expands its seed into a string which is at least one bit longer. The 
pseudorandomness of the output string is proved by noting that it is unpredictable. This is 
true for the h’ part because it was chosen as a truly random smng, and me for the other 
bits as guaranteed by Blum-Micali scheme. Namely, the ability to predict any of these 
bits would compromise the security of the hard-core of F’. The fact that the smng h’ is 
output do not help the predictor because the hard-core predicate of F‘ is unapproximable 
even when given h’. Recall that when given F ’ ( h ’ , x ’ )  the smng h’ is explicitly 
presented. 

Summarizing we get the following Lemma. 

Lemma 1: Let . r (n)=n2.  A sufficient condition for the existence of a pseudorandom 
generator is the existence of a function F of the form 

such that F is strongly one-way for T( I x I )  iterations. 

2.2. Main Ideas 

We prove the Main Theorem by transforming any regular and (strongly) one-way 
function into a new strongly one-way function f ’  for which the conditions of Lemma 1 
hold. 

The following are the main ideas behind this construction. Since the function f is 
strongly one-way, any algorithm trying to invert f can succeed only with negligible pro- 
bability. Here the probability distribution on the range of f is induced by choosing a ran- 
dom element from the domain and applying f. However, this condition says nothing 
about the capability of an algorithm to invert f when the distribution on the range is sub- 
stantially different. For example, there may be an algorithm which is able to invert f if 
we consider the distribution on the range elements induced by choosing a random ele- 
ment from the domain and applying f twice or more (see Appendix A). To prevent this 
possibility, we “randomly” redistribute, after each application of f , the elements in the 
range to locations in the domain. We prove the validity of our construction by showing 
that the probability distribution induced on the range off by our “random“ transforma- 
tions (and the application o f f )  is close to the distribution induced by the first application 
o f f .  

The function f‘ we construct must be deterministic, and therefore the “random” 
redismbution must be deterministic (i.e. uniquely defined by the input to f ’). To 
achieve this, we use high quality hash functions. More specifically, we use hash func- 
tions which map n-bit strings to n-bit strings, such that the locations assigned to the 
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strings by a randomly selected hash function are uniformly distributed and n-wise 
independent. For properties and implementations of such functions see [CW, J, CG, Lu]. 
We denote this set of hash functions by H ( n ) .  Elements of H ( n )  can be described by bit 
strings of length n2. In the sequel h ( E H(n) )  refers to both the hash function and to its 
representation. 

2.3. The Construction o f f '  
We view the input string to f ' as containing two types of information. The first part 

of the input is the description of hash functions that implement the "random" redistribu- 
tions and the other part is interpreted as the input for the original function f . 

The following is the definition of the function f ': 

f ' (ho.  . . . ,ht(nF1 ,i J) = ( h o t  . . . .hr(n+l , i+,h;cf(x>))  

wherex E (0.1)", hi E H ( n ) ,  OSi  .Sr(n)-l. The function r(n) is a polynomial in n, and i+ 
is defined as (i +1) mod t (n). 

The rest of this section is devoted to the proof of the foIIowing theorem. 
Theorem 2: Let f be a regular and strongly one-way function. Then the function f '  
defined above is strongly one-way for t (n) iterations on smngs x of length n . 
Our Main Theorem follows from Theorem 2 and Lemma 1 by choosing r ( n ) l . r ( n ) .  

Let h o . h l ,  . . .  ,h,cmFl ber(n)functionsfromthesetH(n). F o r r = l . . . .  , t(n),let 
g, be the function g, = f h,-lf h,-zf . . . hof acting on smngs of length n ,  let G,(n) be 
the set of all such functions g,, let g be gl (m)  and let G ( n )  be the set of such functions g. 
From the above description of the function f ' it is apparent that the inversion of an iterate 
off ' boils down to the problem of inverting f when the probability distribution on the 
range off is g,(x)  where x E~ (0,I 1". We show that, for most g E G(n) ,  the number of 
preimages under g for each element in its range is close (up to a polynomial factor) to the 
number of preimages for the same range element under f. This implies that the same 
statement is m e  for most g, E G,(n) for all r = l ,  . . .  , t (n ) .  The proof of this result 
reduces to the analysis of the combinatorial game that we present in the next subsection. 

2.4.The game 

Consider the following game played with M balls and M cells where t ( n )  <<A4 12n . 
Initially each cell contains a single ball. The game has r (n )  iterations. In each iteration, 
cells are mapped randomly to cells by means of an independently and randomly selected 
hash function h E H (n). This mapping induces a transfer of balls so that the balls resid- 
ing (before an iteration) in cell Q are transferred to cell h (0). We are interested in bound- 
ing the probability that some cells contain "too many" balls when the process is finished. 
We show that after t ( n )  iterations, for t ( n )  a polynomial, the probability that there is any 
cell containing more than some polynomial in n balls is negligibly small (i.e. less than 
any polynomial in R fraction). 
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We first proceed to determine a bound on the probability that a specific set of n 

balls is mapped after t(n) iterations to a single cell. 

Lemma 3: The probability that a specific set of n balls is mapped after t ( n )  iterations to 

the same cell is bounded above by p (n) = [ - n.:)] "-I, ,  

Proof: Let B = [ b  1, b 2 , . . . , b, ] be a set of n balls. Notice that each execution of the 
game defines for every ball bi a path through t ( n )  cells. In particular, fixing t ( n )  hash 
functions h o ,  h l ,  * . . ,h tcmFl ,  a path corresponding to each bi is determined. Clearly, if 
two such paths intersect at some point then they coincide beyond this point. We modify 
these paths in the following way. The initial portion of the path forb; that does not inter- 
sect the path of any smaller indexed ball is left unchanged. If the path for bi intersects 
the path for bj for some j < i  then the remainder of the path for bi is chosen randomly 
and independently of the other paths from the point of the fust such intersection. 

Because the functions hi are chosen totally independently of each other and because each 
of them has the property of mapping cells in an n -independent manner, it follows that the 
modified process just described is equivalent to a process in which a totally random path 
is selected for each ball in B . Consider the modified paths. We say that two balls bi and 
b; join if and only if their corresponding paths intersect. Define merge to be the reflexive 
and transitive closure of the relation join (over B ) .  The main observation is that if 
h o . h l , - . . . h , ( , ~ l m a p t h e  ballsofB tothesameceli,thenb,,bZ. . . . ,  b,, areal l in the 
same equivalence class with respect to the relation merge. In other words, the probability 
that the balls in B end up in the same cell in the original game is bounded above by the 
probability that the merge relation has a single equivalence class (containing all of 5). 
Let us now consider the probability of the latter event. 

If the merge relation has a single equivalence class then the join relation defines a con- 
nected graph with the n balls as vertices and the join relation as the set of edges. The 
"join graph" is connected if and only if it contains a spanning tree. Thus, an upper bound 
on the probability that the "join graph" is connected is obtained by the sum of the proba- 
bilities of each of the possible spanning trees which can be embedded in the graph. Each 
particular tree has probability at most (t(n)/M)"-* to be embedded in the graph ( t (n ) /M is 
an upper bound on the probability of each edge to appear in the graph). Multiplying this 
probability by the (Cayley) number of different spanning trees (nn-* cf. [E, Sec. 2.3]), the 
lemma follows. 0 

A straightforward upper bound on the probability that there is some set of n balls 
which are merged is the probability that n specific balls are merged multiplied by the 
number of possible distinct subsets of n balls. Unfortunately, this bound is worthless (as 

( > p  (n) > 1 (This phenomena is independent of the choice of the parameter n .). Instead 
we use the following technical lemma. 

M 
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Lemma 4: Let S be a frnite set, and let ll denote a partition of S . Assume we have a pro- 
bability distribution on partitions of S . For every A rS we define m)= 1 if A is con- 
tained in a single class of the partition n and bo=O otherwise. Let n and n‘ be 
integers such that n c n’. Let p (n) be an upper bound on the maximum over all A rS 
such that IA I =n of the probability that & =  1. Let q(n’) be an upper bound on the pro- 
bability that there exists some B rS such that I B I I n ’  and = 1. Then 

Proof: For B cS we define 5s (TI)= 1 if B is exactly a single class of the panition ll and 
{ ~ ( l l ) = O  otherwise. Fix a partition n. Observe that every B , IB I 2n’, for which 

{S O= 1, contributes at least ( :’ ) difSerent subsets A of size n for which & =  1. Thus 
we get that 

(:’I. c SB(n> c 
B cS,IS I Ln’  A cS, IA I =n 

Dividing both sides of this inequality by ( :‘ ), and averaging according to the probability 
distribution on the partitions n, the left hand side is an upper bound for q(n’).  while the 

IS I 
( n ) . P W  right hand side is bounded above by .cI 

(:‘I 
IS I-n Remark: Lemma 4 is useful in situations when the ratio p(n) is smaller than ( nt-n ). 

Assuming that n‘cc I S I, this happens when p ( n )  is greater than I S  I - ” .  Lemma 3 is such 
a case, and thus the application of Lemma 4 is useful. 
Combining Lemmi 3 and 4, we get 

Theorem 5: Consider the game played for t ( n )  iterations. Then, the probability that 
there is 4t(n) .n2+n balls which end up in the same cell is bounded above by 2-”. 

Proof: Let S be the set of M balls in the above game, Each game defines a partition of 
the balls according to their position after t ( n )  iterations. The probability distribution on 
these partitions is induced by the uniform choice of the mappings h.  Theorem 5 follows 
by using Lemma 4 with n ’ = 4 t ( n ) . n 2 + n ,  and the boundp(n) of Lemma 3. 0 

P t n )  

2.5. Proof of Theorem 2 

We now apply Theorem 5 to the analysis of the function f’. As before, let G ( n )  be 
the set of functions of the form g =f h f ( n F l f  . . . hof. The functions h =hi are hash 
functions used to map the range off to the domain off . We let ho ,  . . . ,hf(,,bl be ran- 
domly chosen unifonbly and independently from H(n),  and this induces a probability 
distribution on G(n) .  Denote the range of f (on strings of length n )  by 
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R ( n )  = (zl.zz.. . . ,zM 1 .  Let each zi represent a cell. Consider the function h as mapping 
cells to cells. We say that h maps the cell zi to the cell z j  if h (zi) E f - ' ( z j ) ,  or in other 
words f(h(zi))=z,. By the regularity of the function f , we have that the size of f - ' ( z ; )  

(which we have denoted by m(n) )  is equal for all zi E R ( n ) ,  and therefore the mapping 
induced on the cells is uniform. It is now apparent that g E G (n) behaves exactly as the 
random mappings in the game described in Section 2.4, and thus Theorem 5 can be 
applied. We get 

Lemma 6: There is a constant co, such that for any constant c>O and sufficiently large n 

Prob[3z with lg-'(z)l 2nc".rn(n)) I - ,  1 
nc 

where g E R  G ( n ) .  

Let us denote by G'(n)  the set of functions g E G ( n )  such that for all z in the range 
o f f ,  lg-'(z)l < n C o m ( n ) .  By the above lemma, G'(n) contains almost all of G(n).  It is 
clear that if g E G'(n) then for all in the range off and for all r = 1. . . . , t ( n )  the func- 
tion g, defined by the f r s t  r iterations of g satisfies lg;'(z)l < n C C m ( n ) .  

Lemma 7: For any probabilistic polynomial time algorithm A ,  for any positive constant 
c and sufficiently large n and for all r = 1, . . . , t ( n ) ,  

Prob(A(g, , z ) ~ f - ' ( z ) )  < n- 

where g, E R  G,(n) and z =g,(x),  x ER {0,1)". 

Proof: We prove the claim for r = t ( n )  and the claim for r = 1. . . . , r(n) follows in an 
analogous way. Assume to the contrary that there is a probabilistic polynomial time 
algorithm A and a constant cA such that Prob (A (g ,z) E f-'(z)) > n*A, where g E R G (n )  

By using A ,  we can demonstrate an algorithm A '  that inverts f , contradicting the one- 
wayness o f f .  The input to A' is z = f ( x )  where x E~ (0,l)". A' chooses g E~ G ( n )  and 
outputs A (g ,z). We show that A'  inverts f with non-negligible probability. By assump- 
tion there is a non-negligible subset G"(n) of G' (n )  such that, for each g E G"(n), A 
succeeds with significant probability to compute a y E ~ - ' ( z )  where z = g ( x )  and 
x E R  (0,l I n .  Since g E G'(n), for all z in the range off the probability induced by g on z 

differs by at most a polynomial factor in n from the probability induced by f . Thus, for 
g E G"(n),  A succeeds with significant probability to compute a y E f- ' (z) where z = f ( x )  
and x E R  (0.1 I n .  This is exactly the distribution of inputs to A', and thus A'  succeeds to 
invert f with non-negligible probability, contradicting the strong one-wayness off . 0 

The meaning of Lemma 7 is that the function f is hard to invert on the distribution 
induced by the functions g, , r  = 1,. . . , t (n ) ,  thus proving the strong one-wayness of the 
function f ' for t ( n )  iterations. Theorem 2 follows. 

andz=g(x),xe,y (0.1)". 
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2.6. Extensions 

In the above exposition we assumed for simplicity that the function f is length 
preserving, i.e. x E [O,l}" implies that the length of f ( x )  is n. This condition is not 
essential to our proof and can be dispensed with in the following way. Iff  is not length 
preserving then it can be modified to have the following property: For every n , there is 
an n' such that x E {0,1}" implies that the length of f ( x )  is n'. This modification can be 
carried out using a padding technique that preserves the regularity o f f .  We can then 
modify our description o f f '  to use hash functions mapping n'-bit strings to n-bit strings. 
Alternatively, we can transform the above f into a length preserving and regular function 
f by defining f(xy) = f ( x ) ,  where I x I =n , ly I =n'-n . 

For the applications in Section 3, and possibly for other cases, the following exten- 
sion (referred to as semi-regular) is useful. Let {f, }= Io,, be a family of regular func- 
tions, then our construction can be still applied to the function f defined as 
f ( x , y )  = ( x . f , O ) )  The idea is to use the construction for the application of the function 
f,, while keeping x unchanged. 

Another extension is a relaxation of the regularity condition. A useful notion in this 
context is the histogram of a function. 

Definition 4: The himgram of the function f : {O,l}* +{O, l ]*  is a function his9 :NxN+N 
such that hisrf (n , k )  is the cardinality of the set 

[ x  E (0,l)" : ~ l o g 2 1 f - ' l f ( . 4  = & }  

Regular functions have mvial histograms. Let f be a regular function such that for all 
x E (O,l}", I f - 'Cf(x) ) l  = m ( n ) .  The histogram satisfies hisr f (n ,k)=2" for 
k = Llogz(m(n))] and hkrf ( n ,  k ) = O  otherwise. Weakly regular functions have slightly less 

dramatic histograms. 

Definition 5: The function f is weakly regular if there is a polynomial p ( . )  and a func- 
tion b(.)  such that the histogram off satisfies (for all n) 

n 

t=b (n )+I 

2" ii) C hisrf(n.&) < 

Clearly, this definirion extends the original definition of regularity. Using our techniques 
one can show that the existence of weakly regular strongly one-way functions implies the 
existence of pseudorandom generators. 

Observe that if the b(n)-th level of the histogram contains all of the 2" strings of 
length n then we can apply a similar analysis as done for the regular case. The only 
difference is that we have to analyze the game of subsection 2.4 not for cells of equal 
size, but for cells that differ in their size by a multiplicative factor of at most two. Similar 

(n 'P (n >I2 
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arguments hold when considering the case where the b (n)-th level of the histogram con- 
tains at least I / p ( n )  of the strings and the rest of strings lie below this level (i-e. 
h i s f f ( n , k ) = O ,  for k >b(n)) .  Note that the "small" balls of low levels cannot cause the 
cells of the b(n)-th level to grow significantly. On the other hand, for balls bellow level 
b(n )  nothing is guaranteed. Thus, we get that in this case' the function f' we construct is 
weakly one-way on its iterates. More precisely, it is hard to invert on its iterates for at 
least a I / p ( n )  fraction of the input smngs. In order to use this function for generating 
pseudorandom bits, we have to transform it into a strongly one-way function. This is 
achieved following Yao's construction [yl by applying f '  in parallel on many copies. 
For the present case the number of copies could be any function of n which grows faster 
than c *p (n).logn, for any constant c . This increases the number of iterations for which f ' 
has to remain one-way by a factor equal to the number of copies used in the above 
transformation. That is, the number t ( n )  of necessary iterates increases from the original 
requirement of z(n)  (see section 2.1) to a quantity which is greater than c . p ( n ) ~ ( n ) . l o g n ,  
for any constant c . Choosing this way the function t ( n )  in the definition o f f '  in section 
2.3, we getf' which is one-way for the right number of iterations. 

Finally, consider the case in which there exist smngs above the b (n)-th level. When 
considering the game of subsection 2.4 we want to show that, also in this case, most of 
the cells of the b(n)-th level do not grow considerably. This is guaranteed by condition 
(ii) in Definition 5. Consider the worst case possibility in which in every iteration the 
total weight of the "big" balls (those above level b ( n ) )  is transferred to cells of the b(n)- 
th level. After t ( n )  iterations this causes a concentration of "big" balls in the b(n)- th level 

having a total weight of at most t(n).  2" Choosing t ( n ) = I / p ( n ) n 2  this weight 
(n -P ( n  1)' 

will be at most - *" . But then one half of the weight in the b(n)-th level remains con- 
2 p ( n )  

centrated in balls that were not effected by the "big" balls. In other words we get that the 

function f '  so constructed is one-way for t ( n )  iterations on - * of the input smngs. 
2 p ( n )  

Applying Yao's construction , as explained above, we get a function f' which fill the cri- 
terion of Lemma 1 and then suitable for the construction of pseudorandom generators. 

Further Remarks: 

1) 

2) 

A finer analysis allows to substitute the exponent 2, in condition (ii) of Definition 5 ,  
by any constant greater than 1. 

The entire analysis holds when defining histograms with polynomial base (instead 
of base 2) .  Namely, his? (n J C )  is the cardinality of the set 

(x E I O , ~ ) "  : jlo~~~n,lf-l~(x))lj =kj 

where Q ( n )  is a polynomial. 
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3. APPLICATIONS : Pseudorandom Generators Based on Particular Intractabil- 
ity Assumptions 

In this section we apply our results in order to construct pseudorandom generators 
(PRGs) based on the assumption that one of the following computational problems is 
”hard on a non-negligible fraction of the instances”. 

3.1. PRG Based on the Intractability of the General Factoring Problem 

It is known that pseudorandom generators can be constructed assuming the intracta- 
bility of factoring integers of a special form [Y]. More specifically, in [Y] it is assumed 
that any polynomial t ime algorithm fails to factor a non-negligible fraction of integers 
that are the product of primes congruent to 3 modulo 4. With respect to such an integer 
N ,  squaring modulo N defines a permutation over the set of quadratic residues mod N ,  
and therefore the intractability of factoring (such N ’ s )  yields the existence of a one-way 
permutation [R]. It was not known how to construct a one-way permutation or a pseu- 
dorandom generator assuming that factoring a non-negligible fraction of all the integers 
is intractable. In such a case modular squaring is a one-way function, but this function 
does not necessarily induce a permutation. Fortunately, modular squaring is a semi- 
regular function (see subsection 2.6), so we can apply our results. 

Assumption IGF (Innactabiliry of the General Factoring Problem): There exists a con- 
stant c>O such that for any probabilistic polynomial time algorithm A ,  and sufficiently 
large k 

Prob[ A ( N )  does not split N ] > k - ,  

where N E (0,l)’. 

Corollary 8: The IGF assumption implies the existence of pseudorandom generators. 

Proof: Define the following function f ( N x ) = ( N , x 2 m o d N ) .  Clearly, this function is 
semi-regular. The one-wayness of the function follows from IGF (using Rabin’s argu- 
ment [R]). Using an extension of Theorem 2 (see subsection 2.6) the corollary follows. 

Subsequently, J. (Cohen) Benaloh has found a way to construct a one-way permuta- 
tion based on the IGF assumption. This yields an alternative proof of Corollary 8. 

3.2. PRG Based on the Intractability of Decoding Random Linear Codes 

One of the most outstanding open problems in coding theory is that of decoding ran- 
dom linear codes. Of particular interest are random linear codes with constant informa- 
tion rate which can correct a constant fraction of errors. An ( n  ,k,d)-linear code is an k -  
by-n binary matrix in which the bit-by-bit XOR of any subset of the rows has at least d 
ones. The Gilbert-Varshamov bound for linear codes guarantees the existence of such a 
code provided that k:n < 1 - H 2 ( d / n ) ,  where H 2  is the binary entropy function [McS, ch. 
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1, p. 341. The same argument can be used to show (for every & T O )  that if 
kln c 1 - H 2 ( ( l + ~ ) d / n ) .  then almost all k-by-n binary mamces constitute (n,k,d)-linear 
codes. 

We suggest the following function f:(0,1)*+(0,1]*. Let C be an k-by-n binary 
mamx, x E { O , l ) & ,  and e E E,"s (0,l)" be a binary smng with at most t =L(d-1)/2] ones, 
where d satisfies the condition of the Gilbert-Varshamov bound (see above). Clearly E," 
can be uniformly sampled by an algorithm S running in time polynomial in n (i.e. 
S:(O,l)po'y(n)+E~). Let r E (O,l)Po'y(") be a string such that S ( ~ ) E  E:. Then, 

f (C x ,r ) = (C . C (x  ) +S (r N, 
where C ( x )  is the codeword of x (i.e. C ( x )  is the vector resulting by the mamx product 
xC). One can easily verify thatf just defined is semi-regular (i.e. f & , r ) = C ( x ) + S ( r !  is 
regular for all but a negligible fraction of the C 's). The vector xC + e  (e< ( r ) )  represents 
a codeword perturbed by the error vector e , 
Assumption IDLC (Intractability of Decoding Random Linear Codes): There exists a 
constant c >O such that for any probabilistic polynomial time algorithm A ,  and suffi- 
ciently large k 

Prob( A ( ~ , ~ ( x ) + e ) t x ]  > k - ~ ,  

where C is a randomly selected k-by-n mamx, x E (O,l}k and e E RE:. 

coding theory or pseudorandom generators do exist. 

Corollary 9: The IDLC assumption implies the existence of pseudorandom generators. 

Proof: The one-wayness of the function f follows from IDLC. Using an extension of 
Theorem 2 (see subsection 2.6) the corollary follows. 0 

Now, either assumption D L C  is false which would be an earth-shaking result in 

3.3. PRG Based on the Average Difficulty of Cornbinatorial Problems 
Some combinatorial problems which are believed to be hard on the average can be used 
to construct a regular one-way function and hence be a basis for a pseudorandom genera- 
tor. Consider, for example, the Subset-Sum Problem. 

Input: Modulo M ,  IM I = n ,  and n + l  integers ao,aI ,  . . .a, of length n-bit each. 

Question: Is there a subset I c { 1 , . . . , n ] such that C ai 3 ao(  modM) 

Conjecture: The above problem is hard on the average, when the ai 's  and M are chosen 
uniformly in [Y-' , 2" -1 I. 
Under the above conjecture, the following weakly-regular function is one-way 

i s f  

fss(a1,~2, .  . ,a, ,M , I j = ( a l , a 2 , ' .  tan , M  ,( Cai modM )> 
i e f  
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Appendix A: One-way functions which are not one-way on their iterates

Assuming that / is a (regular) one-way function, we construct a (regular) one-way
function / which is easy to invert on the distribution obtained by iterating / twice.
Assume for simplicity that / is length preserving (i.e. \f{x)\ = \x I). Let \x I = \y I and
let

Clearly, / is one-way. On the other hand, for every xy e {O.I}2", /</(xy))=0"/(0") and
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