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Abs t r ac t .  We initiate an investigation of interactive proof systems (IPS’S) and zero 
knowledge interactive proof systems where the verifier is a %way probabilistic finite state 
automaton (2pfa). Among other results, we show: 

1. There is a class of 2pfa verifiers and a language L such that L has a zero knowledge 
IPS with respect to this class of verifiers, and L cannot be recognized by any verifier 
in the class on i ts  own; 

2. There is a language L such that L has an IPS with 2pfa verifiers but L has no zero 
knowledge IPS with 2pfa verifiers. 

1. Introduction 
Issues in complexity theory and cryptography motivated Babai (11 and Goldwasser, 

Micali, and Rackoff [7] to introduce the concept of an interactive proof system. Speaking 
informally, an Inieracfioe Proof System (IPS) for membership in a language C is a two- 
party protocol whereby a “prover” convinces a “verifier” that elements I € L are actually 
in L. The concept is interesting only if the verifier is not itself sufficiently powerful to 
recognize L. 

To date, almost all research in interactive proof systems has dealt with the case that the 
verifier is a probabilistic Turing machine (ptm) which runs in polynomial time. Due to the 
present lack of understanding of the power of polynomial time computation, many previous 
results depend on unproven assumptions, typically that a certain problem is not in P or 
that a certain cryptosystem cannot be broken in polynomial time. If the given assumptions 
are false, then either the  proof becomes invalid or the result becomes trivial. For example, 
the important and powerful result that any language in NP has a zero knowledge IPS 161 
would become unproven if secure probabilistic encryption schemes do not exist, and would 
become vacuous if P = NP. 

The ability to prove lower bounds is crucial to understanding the structure of the class 
of languages with interactive proof systems. We therefore restrict the class of verifiers, 
namely, to %way probabilistic finite state automata (2pfa). We have obtained a number 
of results on 2pfa’s and IP(Ppfa), the class of languages with interactive proof systems 
in which the verifier is a 2pfa, examining public coins, private coins, and zero knowledge 
proof systems. ([4] contains a preliminary report of these results, including all proofs.) 
For the remainder of this abstract we restrict our attention to zero knowledge interactive 
proofs, noting only that the class IP(2pfa) is quite rich, despite the restricted power of the 
verifier, containing, for example, any language recognizable by a deteiministic exponential 
time Turing machine. 
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2. Definitions 
Our definition of a n  interactive proof parallels the one used in previous papers on in- 

teractive proofs where the verifier is a polynomial-time bounded ptm, for example, [7,6], 
and the one given by [3] in a more general setting. The main difference in our case is 
that the verifier is a 2-way probabilistic finite state automaton (2pfa). A Zpfa consists of 
a probabilistic finite state control and a 2-way head which reads the input string. Tran- 
sition probabilities a re  assumed to be rational. In addition, the verifier can communicate 
with a prover which sees the same input. In our case, the communication is done via a 
single communication cell which can hold a single symbol from some finite communication 
alphabet. The prover writes a symbol in the cell only in response to a symbol written 
by the verifier. At some point in the interactive computation, the verifier can halt and 
either accept or reject. T h e  prover-verifier pair (P, V )  is an  interacfive proof sysfena for  
ihe language L wiih error probabili ty E if 

1. for all z E L, (P,  V)(z) accepts with probability at  least 1 - E ,  and 

2. for all 1: 4 L and all provers P*, (P*, V ) ( z )  rejects with probability at  least 1 - 6. 
Let IP(2pfa) be the class of languages L such that L has an interactive proof system with 
error probability E < 1/2. 

Let ZPFA denote the  class of languages recognized by 2pfa’s with error probability 
L < 1/2. Equivalently, ZPFA is IP(2pfa) restricted to IPS’S (P, V )  where P and V do not 
communicate (so the prover can be empty). 

In some results we will want to talk about the expected or worst-case f i m e  cornpleziiy 
of an IPS (P, V ) ,  defined to be the expected (averaged over all random choices made by 
V and P )  or worst-case number of steps taken by the verifier before halting and measured 
as a function T(n)  of the length n of the input. 

A sweeping 2pfa is a Ppfa restricted so that the input head can switch direction only 
when reading an  endmarker. In any computation, the input head alternately sweeps across 
the input from left to right, then from right to left, and so on. 

We shall also use a more general form of recognition called separation. Let M be an  
IPS or a Zpfa, and let A and B be sets of words with A n  L? = 0. Then M separates A and 
B if there is some constant E < 1/2 (the error probability) such that, for all z E A,  M ( z )  
accepts with probability at least 1 - E ,  and for all t E B ,  M ( z )  rejects with probability at 
least 1 - E (we do not care about the behavior of M on inputs not in A or B ) .  

We temporarily defer the definition of “zero knowledge” intemctive proof system. 

2.1. An Example 

If z is a string, let z R  be I written backwards. Define 

~ a I Z n d r o m e 3  = { I  E (0, I}* I z = 8). 
We describe an IPS ( P ,  V) for Pal indromes  with error probability E for any  constant E > 0. 
If z is a palindrome, the interaction involves k iterations, where k = [log2(l/E)1. On each 
iteration, the prover P sends z to the verifier one symbol at a time. A t  the start  of each 
iteration, the verifer V (privately) tosses a fair coin. Letting w denote the string received 
from the prover during this iteration, if the outcome of the coin toss is “heads” then.V 
checks that w = z and rejects if not. If the outcome is “tails” then V checks that w = zR 
and rejects if not. If the check succeeds for all k iterations, then V accepts. It is easy to 
see that (P, V )  is an IPS for Pal indromes  with error probability E .  This shows: 
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T h e o r e m  2.1. Pal indromes  E IP(2pfa). Moreover, for any error probability E > 0, there 
is an IPS for Palindromes where the verifier is a sweeping Zpfa which runs in worst-case 
time O(n).  

This theorem contrasts with the following impossibility result. 

Theorem 2.2.  Pal indromes  4 2PFrl. 

In fact, we prove a somewhat stronger result, from which the theorem follows. Theo- 
rem 2.2 is particularly interesting in light of Freivalds’ result [5] that ZPFA contains certain 
nonregular sets, such as { O”1” I n 2 1 }. 

3. Zero Knowledge Interactive Proof Systems 

3.1. Old and New Definitions 

Informally, an interactive proof system (P ,  V )  for a language L is zero knowledge if for 
any input z E L and any verifier V*, the only information which V* can get from P during 
their interaction is the single bit of information that z belongs to L .  Previous papers, e.g. 
[7], considered zero-knowledge only for ptime-ptm verifiers; we generalize the definition to 
an arbitrary class of verifiers as follows. Fix some class V of verifier machines, for example, 
2pfa’s or polynomial-time ptm’s. Let (0, V )  be the subclass of machines in V that  d o  not 
communicate with the prover (the symbol 0 in this notation should be a reminder that 
the prover is empty). The  interactive computation of (P ,  V*)(z) defines a distribution 
of conversations between P and V*. The  IPS (PI V )  is zero knowledge if for any verifier 
V* E V there is an M p  E (0, V )  such that, for all 2 E L ,  M v * ( z )  produces a distribution 
of conversations which is “close” to the distribution produced by ( P ,  V*)(z). 

At first glance, it  would appear that the IPS ( P ,  V )  for palindromes described above is 
perfect zero knowledge according to this definition. On input z, the conversation consists 
of the prover sending z to the verifier several times, and obviously a Zpfa can produce this 
conversation alone. On an intuitive level, however, this IPS is clearly not zero knowledge for 
the following reason. Let A be the set of “double palindromes”, i.e., the set of palindromes 
of the form wwR where w is itself a palindrome, and let B be the set of palindromes not 
in A.  It is not hard to see that there is a Spfa V* such that (P ,  V*)  separates A and  B .  
On input 2, V* first checks tha t  IzI is even and rejects if not. Then starting from the  left 
endmarker, V* moves its head two to the right for every symbol sent to it by the prover 
until the right endmarker is reached. At this point, P has finished sending w and is ready 
to send wR to V*,  where z = wwR. So V* is now in a position to compare w with wR. 
Since we can show that no Spfa separates A and B ,  it is clear that P is giving V *  some 
extra information which it cannot get by itself. 

This suggests the following definition of zero knowledge which we call “recognition zero 
knowledge” to distiguish it from previous definitions. 

Let V be a class of verifier machines. Let (PI V )  be an IPS for the language L where 
V E V .  Then ( P ,  V )  is a recognifion zero knowledge IPS for L w i f h  V verifier3 if, for any 
V* E V and any A ,  B C: t with A f~ B = 0 such that (PI V * )  separates A and B ,  there 
an Mv* E (0, V )  such that M,* separates A and B. 

This is a fairly weak definition, in the sense that if a language has no recognition zero 
knowledge IPS then it has no zero knowledge IPS in a strong intuitive sense. 
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3.2. Languages  Having No Z e r o  Knowledge  IPS 

We first consider the palindrome language Palindromes defined in 32.1. We are  able to 
show that the ability of a V* to get extra informatitm from the prover is not a property just 
of the particular IPS (P ,  V )  described in i2.1. It  is an inherent property of Palindromes. 

Theorem 3.1. There is no recognition zero knowledge IPS for Palindromes with 2pfa 
verifiers. This remains true with Ppfa verifiers which run in either polynomial worst-case 
time or polynomial expected time. 

By a similar proof, we can show that the graph isomorphism problem has no recogni- 
tion zero knowledge IPS with Zpfa verifiers. This result contrasts with the situation for 
polynomial-time p tm verifiers, where graph isomorphism does have a (recognition) zero 
knowledge IPS [6]. We .remark that the graph isomorphism problem does have a.n IPS 
with a Zpfa verifier. 

3.3. A Language  With a Recogni t ion  Zero Knowledge IPS 

That the graph isomorphism problem has no (recognition) zero knowledge IPS with 
2pfa verifiers suggests that  techniques which ha.ve been used to obtain zero knowledge IPS'S 
with ptime-ptm verifiers will not extend to Zpfa verifiers. In fact, we have no example of a 
language L 4 2PFA which has a recognition zero knowledge IPS with 2pfa verifiers. With 
Zpfa verifiers restricted to a certain class R, however, we do have such an example. Let 
denote the class of sweeping 2pfa's that halt in polynomial expected time. 

Theorem 3.1, showing that there is no recognition zero knowledge IPS for palindromes, 
also holds with R verifiers. It is interesting to contrast this latter result with the result 
obtained next, that  the  unary version of palindromes has a recognition zero knowledge IPS 
with R verifiers. T h e  unary version of palindromes is the language 

Upar = { o"1" I R 2 1 }. 

Greenberg and Weiss [S] show that Upal  cannot be recognized by any Zpfa which runs in 
polynomial expected time; in particular, Upal is recognized by no machine in R, so the 
next result is not vacuous. 

Theorem 3.2. There is a recognition zero knowledge IPS for Upal  with R verifiers. 

Actually, we prove a stronger result from which Theorem 3.2 follows immediately. We 
describe a n  IPS ( P ,  V) for U p a l  with the following property. For any V *  and any E < 1/2,  
let A (B) be the set of integers n such that ( P ,  V*)(O"l") accepts (rejects) with probability 
at  least 1 - E .  Then there is a set C of integers such that C separates A and B (i.e., 
A C and B n C = 0) and { 1" I R E C} is regular. Our proof of this fact differs from 
previous proofs of zero knowledge in a significant way. Whereas previous proofs involved a 
simulation which used V* as a "black box", o u r  proof uses the internal structure of V* in 
an essential way. This  proof draws upon several facts from the theory of Markov chains. 

4. Related Work 
Other results on interactive proof systems with restricted verifiers appear in [2] and [3]. 

In these papers Condon and Ladner considered the case in which the verifier is restricted to 
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run in space logarithmic in the length of the input, but they did not address the question 
of zero knowledge. 

More recently, Kilian [9], adopting a defintion of zero knowledge based on the one pre- 
sented here, has shown that,  for verifiers which use logarithmic space and polynomial time, 
every language which has an IPS also has a zero knowledge IPS; no unproved assumptions 
are needed to obtain this result. 

Note 

the conference. 
The authors thank the program committee of CRYPT0 '88 for inviting this paper to 
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