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Abstract. 
over  f i n i t e  f ields,  a n d  d i s c w s  w h i c h  are  likely t o  have Yalmost  p r ime”  order.  

W e  i n u e d i g a t e  t h e  jacob ians  of t he  hyperelliptic curves  v 2  + v = u2g+’ 

1. TSe discrete logarithm problem in a finite abelian group A consists in finding for 
given a, b E A an integer m such that a = nab, if such m exists. In cases when the 
discrete log problem appears to be intractable in A, one can construct certain public 
key cryptosystems in which taking large multiples of a group element is the trapdoor 
function. The first examples of A that were considered were the multiplicative groups 
of finite fields. However, because some special techniques for attacking the discrete log 
problem are available in that case, it is useful to study other sources of finite abelian 
groups. In [6] we investigated the use of the jacobians of hyperelliptic curveS defined 
over finite fields. 

In the present article we consider an especially simple family of such curves. We 
first give an algorithm for the group law for this family. Next, we recall how to compute 
the number of points in terms of jacobi sums. In order for the discrete log problem 
to be intractible, we would like the number of points on the jacobian to be “almost 
prime” in the sense of IS]. Some necessary conditions for this are given, and some 
examples are tabulated. 

2. For each positive integer g (the g e n u s )  we consider the hyperelliptic curve v2 + = 
u2g+’ defined over the field F, of p elements, where p is a prime not dividing 3 g  + 1. 

Let I< = F p .  A K - d i v k o r  is a finite formal s u m  D = Crn;P; of -fT-points on the 

curve which is fixed by any r E Gal(T/K). Its degree is Cmi. The finite abelian 
group of K-points of the jacobian, denoted J(K), is the quotient of the group of K -  
divisors of degree zero by the subgroup of divisors of rational functions (defined over 
K )  on the curve. Every element D E J(K) is uniquely associated to a pair of functions 
a, b 6 K[u]  for which dega 5 g ,  deg b < dega, and b(u)* + b(u) - uzg+l is divisible by 
u(uL); namely, D is the equivalence class of the g.c.d. of the divisors of the functions 
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a(.) and b(u) - w. The element D of J ( K )  is then denoted div(a, b). For more details, 
see [6] and (21. 

To add two elements div(a1, b l ) ,  div(u2, &) E J(K), one proceeds in two stages. 
First, let d = d(u)  be the g.c.d. of the three polynomials al(u), aZ(u) and bl(u) + 
b2(u) + 1; and choose s ~ ( u ) ,  sz (u )  and s3(u)  to be polynomials in u such that d = 
slal  + sza2 + ~ ( b l  + b2 + 1). Next, set a = a la2 /8  and 

In stage 2, if deg u > g, we replace the pair ( a ,  b )  by the equivalent pair (a ' ,  b') de- 
fined by setting a r ( ~ )  = (u2g+l -b(u)2-&(u)) /a(u)  and b ' ( ~ )  = -b(u)-1 (mod (a ' (u) ) .  

Since dega' < deg a, successive application of this procedure leads to a pair div(a", b'') 
with dega" 5 g such that div(a", b") = div(a1, b l )  + div(a2, bz ) .  This concludes the 
description of the group law in J( IT). 

3. Let g be a fixed pcsitive integer, let J(K) denote the K-points of the jacobian of 
the curve v2 + v = u2q+l defined over F,, where the degree d = 2g + 1 is prime to p ,  
and let N ,  denote #(J(F,n)). As explained in [6], the zeta-polynomial Z(T) = Zg(T) 

9 

Z ( T )  = H ( T  - c~j ) (T  - F j )  
j= 1 

of the curve u2 + w = u2g+l is related to N ,  as follows: 

The polynomial Z ( T )  is computed from the number of Fpn-solutions of v2 + w = u2g+l 

for n = 1 , 2 , .  . . , g ,  and the result is as follows (see, e.g.. [13]). 
For simplicity, we shall henceforth suppose that d = 29 + 1 is prime. In practice, 

this is the only case we shall be interested in, because of Theorem 4(la) below. Let f 
denote the multiplicative order of p modulo d,  so that dlpf - 1, and let h denote 2g/ f. 
Let x be a fixed character of F;, of order d, i.e., x(p) = e2=*Id for some generator p of 

F;,. Let mj,  1 5 j 5 h,  run.through a set of representatives of (ZldZ) '  modulo the 
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subgroup {p ,p* ,  . . . ,#), and let x j denote the character xmj. For j = 1,2,. . . , h let 
J ,  denote the jacobi sum 

Then J j  is a complex number of absolute value p f l z ,  and 

h 

Z ( T )  = n ( T f  + Jj). 
j= 1 

In what follows we shall suppose that n is prime to f, in which case the preceding 
formula for Z ( T )  implies that 

h 
Nn = n(l+ (-1)"+'J;). 

j= 1 

For cryptographic purposes, we wish to choose g and n so that N ,  is "almost 
prime" in the sense of [S]. For n prime this means that :V,/Nl = &=, l(1- a?)/(l- 

aj)I2 is prime. Clearly this is possible only if n is prime to f .  A second necessary 
condition is that Zg(T) not factor over the rational numbers. The theorem that follows 
describes classes of g which must be avoided, and also a class of g for which Z,(T) is 
irreducible. 

4. Theorem. L e t  g > 1 be a n  integer. Then:  
(1) the  polynomial  Z,(T) factor3 over the  rat ionah (a) if d = 29 + 1 i s  composite; 

OT (b) i f d  = 2g + 1 is p r i m e  u n d  ei ther  ( i )  p is a quadratic nonresidue modulo  d, OT 
else (ii) p has order  g modulo  d u n d  g U even. 

(2) t h e  polynomial  Zg(T) U irreducible over t h e  rationals if d = 2g + 1 W a pr ime,  
g i3 odd, and p h a  o r d e r  g modulo d .  

The proof of this theorem is straightforward, and will be omitted. 
Corollary. For p = 2 a n d  g < 100, the polynomial Z,(T) is irreducible over  Q 

f o r  g = 1,3,11,15,23,35,39,51,83,95,99, and U reducible over Q f o r  all o ther  values 
ezcept possibly f o r  g = 36,44,56,63,75. 

5.  Thus, in order to find examples of almost prime #J(FPn), we must choose g so as 

not to fall in cases (la) or (lb) of Theorem 4, and choose n prime to f .  
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For p = 2, here are the first few values of g with irreducible Z,(T): 

Z1(T) =T2 + 2 

&(T) =T6 - 2T3 + 8 

Z,1(T) =T22 - 4-8T1’ + 2048 

&s(T)  =T3* - 6T2‘ - 16T2’ + 3522”’ - 512T1’ - 6144T5 + 32768 

In the case p = 2 and g = 3, we tested #J(F2-) for all primes n < 50, and found 
the following list of all the almost prime cases, i.e., where this number is 7 times a 
prime. (We wish to thank Andrew Odlyzko for verifying primality of the three large 
unfactored integers below, using the Cohen-Lenstra algorithm.) 

13 7 . 78536756663 

29 7 22106072130099167870283191 

47 7 * 39 82275 92830 90398 46698 24190 47946 07809 61207 

6.  Remarks. 1. If J is the jacobian of v2 + v = ud with d = 2g + 1 prime, it is 
not hard to show that d(#J(F,).  This prevents #J(F,) from being prime for all but 
very small values of p and d (since #J(F,) - p ” ) .  However, #J(F,)/d - Y / d  may 
be prime. For example, in the first table above, for g = 15, d = 31, p = 2 we have 

2. For fixed prime p ,  part (2) of Theorem 4 gives us a source of jacobians over F, 
with irreducible Z,(T): the curves v2 + v = ud with d a prime 3 (mod 4) for which 
p is the square of a primitive root modulo d. For fixed p .  the frequency with which 
such d occur is given by a (generalization of a) conjecture of E. Artin, according to 
which there is a positive constant probability that a prime d 3 3 (mod 4) has p as the 
square of a primitive root. For example, when p = 2 (in which case d E 7 (mod 8), 
since 2 must be a quadratic residue modulo d) ,  the number of d < x with the desired 
property is conjecturally asymptotic to 

#J(F2) = 2 1 5 ( 1 )  = 31 .853. 

X 
C- 

4logx’  
c =  (I- rcl-l.) 1 -0.746- 

primes ( 1 3  
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More information about Artin's conjecture can be found in 111, p. 80-83 and 222-2251. 
3. In searching for suitable jacobians of curves over finite fields FPn, one can take 

several points of view. (a) One can fix the genus g and the field (i.e., p and n), and let 
the coefficients of the curve's equation vary. One expects, roughly speaking, that as 
these coefficients vary the number of points on the jacobian will be nearly uniformly 
distributed in an interval of the form (PQ" - cp(g-'/*)", PQ" + ~ p ( g - ~ / ? ) ~ ) .  This has 
been studied in detail in the cases g = 1, n = 1, p large (see [8]) and g = 2, n = 1, p 
large (see [I]). 

(b) One can fix a curve with rational coefficients, and consider the jacobian of its 
reduction modulo p (Le., over FP) BS p varies. In the case g = 1, conjectural formulas 
for the probability that the corresponding elliptic curve has a prime number of points 
are given in [5 ] .  

(c) One can fix F, (or a finite extension of FP) and also fix a curve with coefficients 
in that field. One then considers J(F,n), i.e., the group of points of J with coordinates 
in a finite extension of the field of definition, which is chosen so that #J(F,n) is "almost 
prime" in the sense of [S]. For this, the curve must have been chosen so that its zeta- 
polynomial Z ( T )  = l-$!l(T'-cr,) is irreducible over Q, i.e., all of the a, are conjugates 
of a = al. Suppose, for example, that the curve is defined over F,, it has irreducible 
zeta-polynomial, and one considers extensions FPS of prime degree n. In that case 
one is interested in primality of the norm of the algebraic integer (an - l ) / ( a  - 1) 
as n varies. This is a generalization of the Mersenne prime problem, and most likely 
the frequency of occurrence of prime values is predicted by a heuristic estimate of the 
same form as in the classical Mersenne case (see [12]). 

The point of view (c) is illustrated in the second table above. 
(d) One can fix the field of definition FPn and examine a family of curves of varying 

genus. This was the point of view in the h t  table above. Even if p" is small, the size 
of the group of points will grow rapidly with the genus, since it is of order PQ". If one 
wants #J to be a prime number or the product of a large prime and a small factor, 
then a necessary condition is that the zeta-polynomial be irreducible. 

One advantage of point of view (d), in addition to the possible desirability of 
having one more parameter to vary (the genus g), is that one can limit oneself to 
curves with special symmetry properties (e.g., the family considered in this report), 
and this seems to make it possible to compute the number of points much more rapidly 
(and also carry out the algorithm for finding multiples of points somewhat faster) than 
in the case of a general curve. 

In conclusion, we recall that, because index calculus type algorithms for iinding 
discrete logs in F;n apparently do not carry over to elliptic curves (see [9]) or hy- 
perelliptic curves, the only known algorithm for finding discrete logs in J(F,n) takes 
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time roughly proportional to the square root of the largest prime factor in #J(Fp) .  
Thus, as far as we know, discrete log cryptosystems using J(FPn) seem to be secure 
for relatively small p” (even when p = 2). From the standpoint of implementation, 
this feature may outweigh the added time required to compute the more complicated 
group operation. 
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