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In this paper the problem of finding the absolutely shortest (possibly nonlin- 
ear) feedback shift register, which can generate a given sequence with characters 
from some arbitrary finite alphabet, is considered. To this end, a new complex- 
ity measure is defined, called the maximum order complexity. A new theory 
of the nonlinear feedback shift register is developed, concerning elementary 
complexity properties of transposed and reciprocal sequences, and feedback 
functions of the maximum order feedback shift register equivalent. Moreover, 
Blumer’s algorithm is identified as a powerful tool for determining the maxi- 
mum order complexity profile of sequences, as well as their period, in linear 
time and memory. The typical behaviour of the maximum order complexity 
profile is shown and the consequences for the analysis of given sequences and 
the synthesis of feedback shift registers are discussed. 

1 Introduction 

The vast majority of implemented cipher systems consists of streamcipher systems. 
In a streamcipher system each plaintext block is enciphered with a varying enci- 
pherment transformation, where the variation is on a block sequence base such as. 
time or storage location. Therefore, identical plaintext blocks usually do not result 

in identical ciphertext blocks. In streamciphers the variation of the encipherment 

transformation inherently implies the presence of memory, whose internal state 
changes with every subsequent block according to some rule. Examples of stream- 
ciphers are the DES in any of its feedback modes [12,3], the running key generator 
(RKG) [8] and th e one-time pad or Vernam cipher [3]. 

The running key generator is usually depicted as an autonomous finite state 
device that generates a sequence which is ultimately periodic. This sequence is then 

added to the stream of plaintext characters. It was the impracticability of the one- 

time-pad that led to streamciphers based on running key generators. The perfect 
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secrecy of the one-time-pad [15] is approached by not using a random keystream, 
but rather a keystream generated by some finite state device, acting on a finite 
length, secret, randomly chosen key. This keystream, produced by a running key 
generator, should resemble a random keystream as much as possible. In particular, 
the unpredictability of successive keystream characters should be maintained as 
long as possible. It turns out that perfect statistical properties and unpredictability 
are not equivalent, the best example being sequences generated by linear feedback 
shift registers. 

Many people have studied this, seemingly difficult, controversy. Well-known in 
this respect are Golomb’s randomness postulates [ 5 ] ,  which measure the randomness 
of a periodic binary sequence, viz. the disparity between ones and zeroes within 
one period, the run-length distribution and the number of values assumed by the 
periodic autocorrelation. Lempel and Ziv [9] introduced a complexity measure for 
finite sequences, based on the recursive copying of parts of a sequence. Rueppel 
[14] considered as a measure of randomness the so-called linear complexity profile, 
denoting the length of the shortest linear feedback shift register which generates 
that part of the sequence which has already been considered. 

Elaborating on Rueppel’s work we propose a complexity measure in this paper, 
called rnazirnurn order complexity, which denotes in a similar fashion the length 
of the shortest feedback shift register to generate a given (part of a) sequence, 
where the feedback function may be any function, mapping states onto characters. 
The name maximum order complexity was chosen because, unlike with linear (or 
first order) complexity, quadratic (or second order) complexity, etc., there is no 
restriction on the nonlinear order of the feedback function. 

The import of maximum order complexity is that it tells exactly how many 
keystream characters have to be observed at least, in order to be able to generate 
the entire sequence by means of a feedback shift register of that length. Also 
maximum order complexity can be viewed as an additional figure of merit to  judge 
the randomness of sequences. 

2 Theory 

In this section we present a summary of the theory of maximum order complexity. 
Proofs are omitted for the sake of brevity, but can be found in 161. Section 2.1 
introduces maximum order complexity and its elementary properties. In Section 2.2 
an algorithm to determine the maximum order complexity profile is discussed. The 
typical behaviour of the maximum order complexity profile is shown in Section 2.3. 
Finally, Section 2.4 takes up the problem of the analysis of pseuderandom sequences 
and the resynthesis with feedback shift registers. 



92 

2.1 Maximum Order Complexity 

Consider the following problem. Given a sequence s = (%, a l ,  . . . , of length 1, 
with characters cq E A ,  where the alphabet A is some finite set. How many sections 
(i.e. memory ceIIs) should a feedback shift register at least have in order to generate 
the sequence s? So regardless of what the (memoryless) feedback function would 
have to be, linear or nonlinear. To this end, the following complexity measure is 
defined: 

Definition 1 The  mazimum order complezity c ( s )  of a sequence s = 
(W, a1,. . . , (~1-1) with characters E A ,  where the alphabet A is  some f in i t e  set ,  i s  
defined to be the length L of the shortest feedback shift register for which there ezists 
a memoryless feedback mapping, such that the FSR can generate the sequence s. 

Maximum order complexity is expressed as being L characters. By this it is implic- 
itly assumed that the memory ceIIs can onIy contain characters from the alphabet 
A.  

Associated with any feedback function F is a substitution table or truth table, 
which can be seen as a list of argument values with the corresponding function 
values. The memory cells of the FSR provide for the argument values and hence 
the truth table is determined by the sequence a. In general it is possible that a 
truth table is not specified completely by the sequence it generates, in which caSe 
there are no function values specified for one or more argument values. 

Maximum order complexity has a number of basic properties, viz.: 

Proposition 1 

1. For a sequence s consisting of two  or more possibly repeated different charac- 
ters, the complezity c(s) i s  equal t o  the length-plus-one of  the longest subse- 
quence that occurs at lea& twice with dtflerent successor characters. 

2. The  complen'ty of a sequence is  0 iff this sequence consists of one  possibly 
repeated character. 

3. The m a n ' m u m  vdue  of the complezity of a sequence of length 1 is  I - 1. A 
sequence of length 1 has a complezity of 1 - 1 iff the sequence consists of 1 - 1 
consecutive copies of some  character, followed b y  an unidentical character. 

Periodic sequences of period p are denoted by 2 = (aO, a l , .  . . , ap-l)CO. With the 
period we mean the least integer p ,  such that Vl,o - = a,]. For periodic sequences 
we have the following property: 

Proposition 2 

1. The minimum complezity of a periodic sequence of period p is [log, p1, where 
a = I f f  1, the  cardinality of  the character alphabet. 

2. The m a n - m u m  complexity of a periodic sequence of  period p is p - 1.  
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It seems natural for a FSR to also consider the complexity or degree of diffi- 
culty of the feedback function itself. One could consider for example the number of 
terms and highest degree in some representation of the function like the Disjunctive 
Normal Form (DNF, see e.g. [lo, pg. 3701) or the Algebraic Normal Form (ANF, 
see e.g. [14, pg. 541). As is the case with many complexity measures, the relation 
between high or low complexity and cryptographically good or bad sequences is not 
straightforward. Just as with linear complexity high maximum order complexity 
sequences are not necessarily cryptographically good, as demonstrated by the se- 
quence (00- a -01) of length I and complexity I - 1. Clearly, one has to find out the 
typical complexity values of good sequences or better even the typical complexity 
profile as done by Rueppel in [14, Ch. 41 for linear complexity. 

From our definition of complexity it can be seen that in case the feedback func- 
tion turns out to be linear, maximum order complexity is equal to linear complexity. 
This situation occurs with the so-called pseudo-noise or PN-sequences (sometimes 
called maximum-length or MGsequences) of period 2' - 1, see e.g. 151. 

Example 1 Consider the following sequence of length 25, obtained with an unbi- 
ased dice: = (6544552566433434162531433). It has a complexity of 3 characters, 
as all the subsequences of length 3 are distinct, but subsequence (43) has two dif- 
ferent successors. 

Consider again a sequence s = (ao, al, .  . . , C Y L - ~ ) ,  with cq E A. The transposed 
sequence t = Ts = (PO, P I , .  . . ,&I), with /3, E B = TA is defined to be the sequence 
which is obtained by substituting each character cri of g by a character pi from the 
alphabet B ,  where the transposition operator T induces a one-to-one correspondence 
between the cq and the /3; for all i, 0 5 i 5 1 - 1. For these transposed sequences 
we have the following result: 

Proposition 3 For all sequences s the maximum order complexity of s and that of 
its transpose Ts have the same value. 

As a consequence, in the binary case the complementary sequence is generated by a 
feedback function which has inclusion and multiplication interchanged in the DNF 
representation. 

Next we restrict ourselves to periodic sequences of period p .  For this type of 
sequences we have the following result: 

Proposition 4 A periodic sequence 2 = (ag, al ,  . . . , ap-l)m and its reciprocd s' = 
(ap-l,. . . , a1, have the same complezity. 

It can easily be seen that Proposition 4 does not hold for non-periodic sequences 
in general. For example the sequence (aa- .  .ab) of length 1 has complexity I - 1, its 
reciprocal (baa - .aa) has complexity 1. 
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Feedback Functions of the Maximum Order FSR Equivalent 

The maximum order feedback shift register equivalent of a sequence 8 is defined as 
the FSR of length c(a) and a feedback function such that the FSR can generate 
the sequence a. We now restrict ourselves to sequences of characters which are 
elements from some b i t e  field G F ( q ) .  For finite field sequences it is customary to 
use the truth table to derive an analytical expression for the feedback function. In 
general the truth table of a sequence will not be specified for all qc possible entries, 
if c is the maximum order complexity of the sequence. This is due to the fact 
that not necessarily all qc possible FSR states occur in a particular sequence. The 
consequence is that there exists an entire class of feedback functions which all 
give rise to the same sequence 5. For this class of feedback functions the following 
result is obtained: 

Proposition 5 Let ax denote the class of feedback functions of the maximum order 
feedback shift register equivalent of the periodic sequence s_ over GF(q) ,  where s hus 
complexity c and period p .  The number IQSI - of functions in the class - satisfies: 

Qe-P 
IQSI = Q 

So, unlike with linear complexity where the feedback function is unique for 
periodic sequences, in general contains more than one function and one is able 
to search for functions exhibiting certain properties such as non-singularity, the 
least order product function or the function with the least number of terms. 

2.2 

In [2] Blumer et al. describe a linear-time and -memory algorithm to build a Directed 
Acyclic Word Graph (DAWG) from a given string of letters, using a mechanism 
of suffixpointers as described in [13]. This DAWG is then used to recognize all 
substrings (or words) in the string. 

The DAWG consists of at  most 21 nodes connected by at most 31 edges, where 1 
is the length of the string. The nodes represent equivalence classes of substrings and 
the edges are labeled with string letters. An edge points from one node to another 
if and only if the first equivalence class contains a substring, which extended with 
the edge’s letter belongs to the other equivalence class. The suffix pointer is an 
edge which points from a node to the node representing the equivalence class with 
the longest common suffix of all strings of the first node’s equivalence class. Two 
substrings are defined to be equivalent if and only if their endpoint sets are equal. 
An endpoint set of a given substring is defined as the set containing all positions 
within a string where the given substring ends. The edges of a DAWG are divided 
into primary and secondary edges. An edge is called primary if and only if it belongs 
to the primary path, which is the longest path from the source to a node. With 
the length of a path the number of edges in that path is meant. The depth d ( d )  
of a node rP is the length of the primary path from the source to that node. The 

The Maximum Order Complexity Profile 
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maximum depth h(s) of a sequence g is defined as the maximum of the depths of all 
the nodes with more than one outgoing edges (denoted by the set of branchnodes 
BN(s ) )  of the DAWG of 4. 

The following proposition relates the complexity of a sequence to its maximum 
depth in the DAWG. 

Proposition 6 The complezity c(g) of a sequence 4 with characters from some 
finite alphabet A satisfies: 

It appears that the DAWG is an efficient tool to determine the maximum order 
complexity profile of a given sequence. 

Proposition 7 Blumer's algorithm can be used to determine the complem'ty profile 
of a sequence 5 with characters from some finite alphabet A in linear time and 
memory. 

As Blumer et al. did in their paper, it should be noted that the linearity of their 
algorithm is with regard to the total processing time related to the length of the 
sequence. 

Blumer's algorithm can be used for a variety of other purposes by postprocessing 
the DAWG. Examples are: determing the period of a periodic sequence, finding a 
subsequence in a given sequence (linear in the subsequence length), generating a 
given sequence based on the least number of observed characters, etc. 

The algorithm introduced by Karlin et al. [7] cannot be compared with Blumer's 
algorithm as it seems to be a two-pass algorithm. This fact renders Karlin's algo- 
rithm as unsuitable for the purpose of determining the complexity profile of a given 
sequence. 

2.3 The Typical Complexity Profile 
In this section the behaviour of the maximum order complexity profile is viewed 
at. Let s = (QO, al, . . . , a1-l) be a sequence of length 1 and complexity c(s) with 
characters G E A ,  where the character alphabet A is some finite set. In the sequel 
we will use cI to denote the complexity c (aO,  al ,  . . . , aI-l). 

As with linear complexity, the value 112 forms a boundary value, which deter- 
mines whether the complexity profile jumps to a higher value or remains the same. 

Proposition 8 If the sequence of length I ,  mentioned aboue, has complezity C I ,  
then the value of the complezity c1+1 of the sequence, eztended with al, is given by:  

C l f l  = C I ,  c1 2 112 
I l - c 1 ,  c1 < 112 
2 C I f l ,  2 C l  < 1 < C [  + UC' 
2 1 + 1 - U C ' ,  1 2 c1 + aC', 
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where a = IAl is the cardinality of the character alphabet. 

Proposition 8 shows exactly how the complexity profile jumps from one value to 
some other value if a sequence is extended with some character el, a phenomenon 
illustrated by Figure 1. Another way to look at the jump behaviour of the com- 

1/2 - - /- a I - c  

1 - j  

j-1 

Figure 1: Jumps in the complexity profile. 

1 - j  

112 

Figure 2: Backwards relationship of complexity values. 

plexity profile is the following. Assume that cl = 1 - j and c l - l  = j - n, for positive 
n. What are the possible values of j and I for certain values of n, i.e. what are 
the possible values of ci-l? The answer to this question is given by the following 
proposition. 

Proposition 9 Let CI = 1 - j and clpl = j - n, with 1 5 n 5 j < 1 then n i s  
additionally restricted b y  the inequality n <_ j - log,, j and hence cl-l >_ log,j 

Figure 2 illustrates this backwards relationship between successive complexity val- 
UeS. 
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2.4 

Using various statistical models to describe the behaviour of maximum order com- 
plexity with increasing sequence length, in [6] it is demonstrated that the expected 
maximum order complexity of a random sequence of length 1 with characters from 
a finite alphabet A with cardinality a is given by 

Sequence Analysis and FSR Synthesis 

& ( e l )  x 2 log, I .  

In fact this turns out to be an upperbound, whereas the lowerbound is proven to 
be logal. This result itself was already known for some time, see e.g. [7] and [l]. 
Consequently, the maximum order complexity profile of random sequences follows 
the 2 log, I curve. This fact in itself can be used to judge the randomness of given se- 
quences. For example, DeBruijn sequences of order n (see e.g. [4]) have a maximum 
order complexity of n and are therefore clearly qualified as non-random. 

In order to construct the shortest feedback shift register which generates a given 
sequence of length I one first determines its maximum order complexity and then 
one determines its feedback function. The first operation has order proportional 
to 1 and is expected to yield a complexity value of 2logl. The second operation, 
which can be performed with standard techniques (see [ S ] ) ,  has order c2‘ for the 
binary case. Hence, the expected order of the FSR synthesis procedure is 21’ log 1 
(aa opposed to I log I for DeBruijn sequences). This expected order clearly limits 
the feasibility of general FSR resynthesis to moderate length sequences. 

3 Conclusions 

Our research has highlighted the problem of finding the shortest feedback shift reg- 
ister which generates a given sequence with characters from some finite alphabet. 
We have focussed here on the absolutely shortest FSR, regardless of its feedback 
function, which could be highly nonlinear. To this end, a new complexity m e s u r e  
has been introduced, called the maximum order complexity, as opposed to the first 
order, or linear complexity, the second order, or quadratic complexity, etc. The 
basic properties of maximum order complexity have been shown and, in fact, it has 
been demonstrated that the maximum order complexity is strongly connected with 
nonlinear feedback shift registers. We believe that our results provide a new contri- 
bution to the theory of nonlinear feedback shift registers and a better understanding 
of their functioning. 

The practical import of maximum order complexity has been enhanced by the 
identification of an efficient algorithm for obtaining the maximum order complexity 
profile of arbitrary sequences. It has been shown that the maximum order complex- 
ity profile can be determined in linear time and memory, using Blurner’s algorithm. 

By considering the complexity of random sequences, the typical behaviour of 
the maximum order complexity profile has been clarified. 
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The consequences for the analysis of pseudo-random sequences and the resynthe- 
sis with feedback shift registers have been shown, viz. the total effort to determine 
the shortest FSR equivalent is of the order 2i2 logz 1 for the binary case. 

Concluding, we can say that the maximum order complexity profile is a use- 
ful new tool for judging the randomness of sequences.’ For example, it declares 
DeBruijn sequences as non-random, whereas these sequences are considered highly 
complex according to Lempel and Ziv and some of these sequences are also consid- 
ered complex according to Rueppel’s linear complexity profile. 
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