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Abstract. The concept of provable cryptographic security for pseudo-random 

number generators that was introduced by Schnorr is investigated and extended. 

The cryptanalyst is assumed to have infinite computational resources and hence 

the security of the generators does not rely on any unproved hypothesis about the 

difficulty of solving a certain problem, but rather relies on the assumption that 

the number of bits of the generated sequence the enemy can access is limited. 

The concept of perfect local randomness of a sequence generator is introduced and 

investigated using some results from coding theory. The theoretical and practical 

cryptographic implications of this concept are discussed. Possible extensions of the 

concept of local randomness as well as some applications are proposed. 

1. Introduction 

It is well-known that beyond its unicity distance every cipher can be broken in 

principle, e.g., by an exhaustive key search, which is infeasible except for very sim- 

ple ciphers. The aim of the designer of a cryptosystem is to make it secure against 

every attack that is practically feasible. Usually feasibility is specified by computa- 

tion time, but it is conceivable that an attacker is limited by other restrictions, for 

instance, by his available storage capacity, by the number of ciphertext bits that he 
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can obtain in a ciphertext-only attack (which is exactly the restriction considered 
by Ozarow and Wyner [15] in their recent treatment of the wire-tap channel), or 
by the number of bits of plaintext that he can obtain for a known-plaintext attack. 
The results of Section 2 show that provably-secure ciphers can be constructed un- 
der the restriction that the number of plaintext bits obtainable by the enemy is 
smaller than the length of the key, divided by the logarithm of the plaintext length. 
This restriction, to whose formulation we were led by the work of Schnorr [18], is 
inappropriate for most practical applications and is much stronger than a suitable 
restriction on computation time. However, inasmuch as no provably-secure practi- 
cal cipher has yet been devised for a computation-time restriction, the construction 
of provably-secure stream ciphers for the limited-plaintext restriction appears to be 
of interest. 

At Eurocrypt 88, Schnorr [18] presented a pseudo-random number generator 
whose security does not rest on any unproven (albeit plausible) assumptions, in con- 
trast to most other proposed pseudo-random number generators [2,3,14]. Schnorr's 
generator stretches a random seed of length k = 77x2" to a pseudo-random sequence 
of length n = 2m2,", which cannot be distinguished from a random sequence by 
any statistical test that  examines at most e = 2 " f 3 - ( b g ~ m ~  bits, even using infinite 
computational resources. [By a "random binary sequence" of length k we shall d- 
ways mean a sequence of k binary random variables that takes on all 2k possible 
values, each with probability 2-&.] The length of the seed is roughly squared in 
this expansion, i.e., n kZ, and the number e + 1 of bits that must be examined 
by a distinguishing statistical test is roughly the third root of the seed length, i.e., 
e z a, which is very small from a cryptanalytic point of view. The generators 
constructed in this paper are superior to Schnorr's in two respects: the parameter 
e is on the order of k/ log, n rather than only a and the generated sequences are 
truly locally random rather than only (according to Schnorr's definition) locally 
indistinguishable from a random sequence. 

In Section 2, we introduce the concept of a perfect local randomizer, i.e., of 
a sequence generator that stretches a (binary) random sequence of length k to a 
pseudo-random sequence of length n such that every subset of e or less bits of the 
generated sequence is a set of independent random bits. The concept of a perfect 
local randomizer corresponds to what is known in combinatorics as an orthogonal 
array. We use many results from coding theory to obtain explicit constructions 
of perfect local randomizers and to prove bounds on the achievable degree of per- 
fect local randomization. We show that, for any choice of k, n and e satisfying 
e 5 k/ log, n, there exist perfect local randomizers. A topic closely related to per- 
fect local randomization is the generation of so-called k-wise independent random 
variables, which was originally introduced in [8] and later also treated in [l] and 
[ll]. The special case of pairwise independence is treated in (41, (71 and [lo:. Recent 
theoretical interest in these schemes was motivated by their application in the con- 
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struction of deterministic polynomial time algorithms from probabilistic ones for 
certain problems. 

In the complexity-theoretic approach to pseudo-random number generation, a 
pseudo-random number generator is defined to be a family of sequence generators 
indexed by the security parameter k (k = 1 , 2 , .  . .) that stretch a sequence of k 
random input bits into a pseudo-random sequence of length n(k) where n ( k )  is 
a polynomial in I c .  In Section 3, we show that, for every integer 1, every func- 
tion n(k) with n(k) 5 k‘ for all but finitely many k, and every c > 0, there exist 
pseudo-random number generators that stretch k-bit seeds into n( k)-bit sequences 
with the property that  no statistical test (regardless of its computation time) ex- 
amining not more than e ( k )  = L(1 - c ) k ]  bits can distinguish them from random 
sequences. We also show that e ( k )  > k is not achievable, thereby giving tight lower 
and upper bounds on the achievable e ( k ) .  However, we are unable to show that the 
stretching function of any of these generators is computable in time polynomial in 
I c ,  but the linear sequence generators considered in Section 2 are easily extended 
to polynomial-time-computable pseudo-random number generators that achieve a 
local randomization of e ( k )  = [k/ log, n(k)j  bits rather than e ( k )  = [(I - c )k ]  bits. 

The restriction that Schnorr (181 puts on statistical tests, namely, that they can 
operate on at most a certain number of bits of the generated sequence, appears 
to be more information-theoretic than complexity-theoretic. This fact suggests 
generalizing the restriction in the following way: assume the enemy is allowed to 
obtain e arbitrary bits of information about the generated sequence, i.e., he is not 
restricted to acquiring information by examining binary digits but can, for example, 
obtain the value of an arbitrary random variable that does not give more than e bits 
of information about the sequence. Somewhat surprisingly, it turns out that under 
this looser restriction on the enemy’s obtainable information, even for arbitrarily 
small e, “local” randomization cannot be achieved, as is shown in Section 4. The 
quotation marks here emphasize the fact that the accessed information may in this 
model very well be global, but its amount is limited. Similarly, if the enemy is able 
to obtain e arbitrary parity checks (modulo-two sums) on the sequence bits, perfect 
“local” randomization is shown to be impossible. The results of this paper (as well 
as Schnorr’s result) strongly rely on the assumption that the enemy’s information 
about the sequence consists of knowing some subset of the digits in the sequence. 

In Section 5, we suggest two possible applications of the proposed sequence gener- 
ators. They might be excellent building blocks within practical ciphers for spreading 
local (pseude ) randomness when used together with compressing transformations 
that guarantee confusion, and they are certainly of use wherever a secret key must 
be expanded (for example, in key scheduling within block ciphers). 
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2. Generators Achieving Perfect Local Randomness 

Unlike in the literature based on, or motivated by, complexity theory, including 
[lS], we consider in this section individual sequence generators of specific size, rather 
than infinite families of generators. The asymptotic case is treated in Section 3. 
Let I,, denote the set of binary sequences of length n, i.e,, I,, = {O,l}n.’ A random 
variable which takes on two values, both with probability 1/2, will be called a coin- 
tossing random variable, abbreviated CTRV. Throughout the whole paper, log x 
denotes the logarithm t o  the base 2 of x. 

Definition 1: A ( k , n )  sequence generator G is a function G : Ik - I,, : g k H 

- sn = G ( g k ) .  

Note that a ( k , n )  sequence generator can be interpreted as the encoder of a binary 
block code with 2k codewords of length n, where we think of the randomly-selected 
key bits as forming the k information bits. 

Definition 2: A ( k , n )  sequence generator G is a ( k , n , e )  perfect local randomizer 
(PLR) if, when the input is a sequence of k independent CTRV’s, then every subset 
of e of the n binary output random variables is a set of e independent CTRV’s. The 
degree of perfect local randomness of a (k, n) sequence generator G is max{e : G is 
a ( k , n , e )  PLR}. 

It is obvious that there exists no ( k , n ,  e)  PLR for e > k. For e = k and n > k, the 
only PLR’s are the two trivial ones where k = 1 (example: repeat the input bit n 
times) or where k = n - 1 (example: the first n - 1 bits are the input bits and the 
last bit is their modulo-two sum). 

Definition 3: A ( k , n )  sequencegeneratorislinearifand onlyif, for d z : , ~ :  E I k ,  
G(g, k k  @ g2) = G(2’;) @ G(g:), where @ denotes bitwise addition modulo 2. 

A linear ( k , n )  sequence generator can be interpreted as an encoder for a linear 
binary code and can be specified by the binary k x R matrix such that 

The matrix is usually called the generator matrix in coding theory. The following 
Lemma restates a well-known result in coding theory (viz., the condition for the 
digits in some selected e positions to be choosable as a subset of the k information 
digits) in terms of PLR’s. The proof is omitted. 

Lemma: A linear ( k ,  n) sequence generator G is a (k, n, e)  perfect local randomizer 
if and only if every subset of e columns of axe linearly independent. 

The following theorem gives lower and upper bounds on the achievable degree of 
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local randomness for (k, n) sequence generators, 

Theorem 1: There exist linear ( k , n ,  e) perfect local random'zers if 

k 
logn ' e < -  

or if h[(e  - l) /(n - l)] < k / ( n  - 1) and e 5 (n  + 1)/2.  There exists no ( k , n , e )  
Linear or nonlinear PLR if h [ ( e  - 1)/2n] 2 (k + 1.5)/n, which is satisfied when 

2k + 3logn + 2 
e >  

log n - log( k/2) 

where h ( z )  = -z log z - (1 - 2) log( 1 - z) is the binary entropy function. 

Proof: A well-known fact about linear codes (see [12], Chapter 1, Theorem 10) is 
that, given any parity-check matrix for the code, the minimum distance equals the 
minimum positive integer d such that there exists a set of d columns in the parity- 
check matrix of the code that are linearly dependent or, equivalently, the maximum 
d such that every subset of d - 1 columns are linearly independent. By definition, 
a parity-check matrix for a linear code is the encoding matrix of the dual code. 
From the above lemma, we conclude that the degree e of perfect local randomness 
of a linear ( k , n )  sequence generator is one less than the minimum distance d of the 
dual code to the code encoded by this generator. This dual code is a linear code 
with dimension n - k, i.e., a [n,n - k,d] linear code with 2"-k codewords (see [12], 
p. 9). In other words, a linear ( k , n , e )  PLR is an encoder of the dual of a linear 
(n,n - k , e  + 11 code and every encoder of the dual of a linear [n,n - k , d ]  code 
is a ( k , n , d  - 1) PLR. We can thus apply the Gilbert-Varshamov existence bound 
for linear codes (see 1121, Ch. 1, Theorem 12) which states that given n and k 
there exists a binary linear [n, n - k, d ]  code (and hence a linear (k, n, e) PLR with 
e = d - 1) if 

d - 2  

i = O  i=O 

The existence of (k, n, e)  PLR's for e 5 k/ log n now follows immediately from the 
fact that CzZt ("T') < ne (for n > 1). In the following we will make use of the 
inequalities (see (211, inequalities A.24 and A.30) 

where the last inequality holds for t 5 n / 2 .  Letting t = e - 1 and replacing 
n by n - 1 in the last inequality proves the existence of linear ( k , n , ~ )  PLR's if 
(n - l )h[(e  - l ) / ( n  - l)] < k and ( e  - l ) / ( n  - 1) 5 1/2, which completes the proof 
of the first part of Theorem 1. 
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In order to prove the non-existence claim of Theorem 1 for linear (k, n, e )  PLR's, 
we consider the number Q of all Linear combinations of Le/2J or fewer columns of 
E. If 

then either there exists a linear combination of Le/2J or fewer columns that equals 
the all-zero column or there exist at least two different linear combinations of Le/2J 
or fewer columns that are equal, and hence there exists a linear combination of e or 
fewer columns that equals the all-zero column. Thus, satisfaction of inequality (2) 
implies that there exists no linear (k, n, e) PLR. That (2) also implies the nonexis- 
tence of nonlinear (k ,n ,e)  PLR's is equivalent to a result proved in [5] and called 
the uniform projection lemma. F'rom (l), it follows that inequality (2) is satisfied if 

and thus also if 
k + logn + 1/2  

, h ( 2 )  > n (3) 

as can easily be verified. To complete the proof of Theorem 1, we note that for 0 < 
1: < 1, h ( z )  1 -z logx.  Since -log[(e - 1)/2n] > -log(k/2n) = logn - log(k/2), 
inequality (3) is satisfied if (e - l)( logn - log(k/2)) > 2k + 2logn + 1 and thus 
also if e(1ogn - log(k/2)) 1 2k + 3logn + 1 - log(k/2). Because k 2 1 and thus 
log(k/2) 2 -1, the non-existence of (k ,n ,e )  PLR's is established when the last 
inequality of Theorem 1 is satisfied. 0 

Remarks: Note that the lower and upper bounds on the achievable degree e of 
perfect local randomness given in Theorem 1 differ by a factor of approximately 2. 
We have shown in the above proof that the problem of determining the maximal 
achievable degree of perfect local randomness of any linear ( k , n )  sequence genera- 
tor is equivalent t o  the problem of determining the maximal achievable minimum 
distance d of a linear binary [n, n - k, d] code. Hence every bound on the minimum 
distance of linear [n, n - I c ,  d]  codes can direct.ly be transformed into a bound on 
the degree of perfect local randomness of linear ( k , a )  sequence generators. The 
best table of achievable minimum distances of linear codes known to the authors 
is that of [20]. The corresponding two problems for nonlinear PLR's and codes, 
however, are distinct and much less is known about. the first of them. It is therefore 
somewhat surprising that the Hamming bound, a well-known upper bound on the 
achievable minimum distance of a code (linear or nonlinear) with n - k information 
bits and codeword length n, is correspondingly valid for the maximal degree e of 
perfect local randomness of any ( k , n , e )  PLR. The Hamming (or sphere packing) 
bound (see [12], Ch. 1 ,  Theorem 6), which follows from the fact that all spheres of 
radius ( d  - 1 ) / 2  (the number of errors guaranteed to be correctable by the code) 
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must be disjoint, states that there exists no binary code with 2"-k codewords of 
length n and minimum distance d if 

Because e = d - 1, this bound is equivalent to the bound (2) on the maximal degree 
of perfect local randomness of a (k, n, e) PLR, although the latter was obtained in a 
different way that applies only for linear PLR's. It is an open problem whether upper 
bounds on the achievable degree of perfect local randomness corresponding to the 
McEliece-Rodemich-Rumsey-Welch upper bound [13] on the achievable minimum 
distance of a code, which is significantly better than the Hamming bound, can be 
derived. Clearly any upper bound on the minimum distance d gives an upper bound 
on the degree of perfect local randomness e that can be achieved by linear PLR's, 
the question is whether the same bound applies to nonlinear PLR's as well. 

Theorem 1 gives an existence bound for good linear PLR's. Although the proof 
of the Gilbert-Varshamov bound is in principle constructive, its application for 
finding good PLR's for general k and n requires computation time exponential in 
k and n. The following theorem exhibits an infinite polynomial-time constructable 
class of linear (E,n,e) PLR's for which e > E/logn, i.e., whose degree of perfect 
local randomness is approximately equal to the value guaranteed by the Gilbert- 
Varshamov lower bound. 

Theorem 2: The encoder of an extended Reed-Solomon code over GF(2") with 
e information symbols, codeword length 2" and design distance 2" - e + 1 is a 
linear (me, m2m, e) perfect local randomker when the symbols are appropriately 
represented by m binary digits. 

Proof Extended Reed-Solomon codes over GF(2") (see [12]) are maximum distance 
separable, i.e., every subset of e codeword digits may be chosen as the e information 
digits. By appropriately representing every digit of GF(2m) as a binary m-tuple, 
the Reed-Solomon code becomes a binary linear code with k = me information bits 
and codeword length R = m2" such that, for random information bits, every subset 
of e m-bit blocks of the codeword is random. Thus certainly every subset of e bits 
is random. 0 

Remark: The maximum-distance-separable property of Reed-Solomon codes derives 
from the fact that any k x n generator matrix E is such that every k columns of 
G form a Vandermonde matrix. Other authors have noted the usefulness of the 
properties of Vandermonde matrices [4,8] or of BCH codes [I] in connection with 
E-wise independence of random variables. 

The PLR's of Theorem 2 can be compared fairly with the pseuderandom number 
generator suggested by Schnorr [18] since the parameters k and n can be chosen 
to coincide. Schnorr's generator is a family of (7dlrn, 2~722~") sequence generators 
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(rn is the security parameter) such that no test examining at most 2m/3-('0gm)2 

bits can distinguish the output sequence from a random sequence. An extended 
Reed-Solomon code over GF(2'") with 2"-' information symbols corresponds to a 
(rn2m,2m2Zm,2m-1) PLR that not only achieves true local randomness instead of 
only indistinguishability from randomness but also gives a degree of perfect local 
randomness greater than the third power of that guaranteed by Schnorr. The 
smallest value of rn for which Schnorr's lower bound is nontrivial is m = 162 where 
the number of bits that must be examined by a distinguishing statistical test is 
e = 2 (out of approximately 1 0 ' O o  bits), compared to e = 216' for the Reed-Solomon 
code. (This example illustrates that the practical significance of asymptotic results 
in cryptology must always be carefully evaluated.) 

In the following, we discuss nonlinear perfect local randomizers. A (k, n, e) PLR 
(linear or not) is the encoder of a binary block code with 2k codewords such that 
for every subset of e positions, every e-bit pattern occurs exactly 2"-' times. Such 
a configuration is also known as an orthogonal array [17] of size 2k,  n constraints, 2 
levels, strength e and index 2"-'. As mentioned earlier, the problems of designing 
linear codes with large minimum distance and of designing linear PLR's with large 
degree of perfect local randomness are equivalent. For the nonlinear case, however, 
the two problems are distinct, and much less is known about the latter. Neverthe- 
less, some results from coding theory can be applied. MacWilliams ([12], Chapter 5 )  
introduced a transform for the distance distribution of a code that yields, for linear 
codes, the distance (or, equivalently, the weight) distribution of the dual code. The 
significance of the transform of the distance distribution of a nonlinear code is not 
obvious since there exists no dual code for a nonlinear code. However, surprisingly 
enough, if one defines the dual distance d' of a code as the minimum distance value 
for which the transformed distance distribution is not zero, then one obtains pre- 
cisely what we are looking for: the degree of perfect local randomness of an encoder 
for the code considered as a sequence generator is e = d'- 1. This remarkable result 
is due to Delsarte [6]. 

The question whether for large Ic and n there exist nonlinear (Ic,n) sequence 
generators whose degree of perfect local randomness is greater than that of every 
linear ( k , n )  sequence generator is open. However, there do exist some nonlinear 
PLR's superior to the best linear PLR's. The so-called Kerdock codes K ( m )  are 
(2m,2zm,2m-1-2("-1)/2) nonlinear codes for all even m 2 4 that yield (2m,2",5) 
nonlinear PLR's as shown by determining the dual distance d' of these nonlinear 
codes (see [12], Ch. 15, Theorem 24 and Corollary 29). The so-called punctured 
Preparata codes P( m)* similarly yield (2"-2m, 2"-1, 2m-'-2m/2-1) nonlinear PLR's 
for all even m 2 4 (see [12], Ch. 15, Theorem 32). The Delsarte-Goethals codes 
D G ( m , d )  with d = ( m - 2 ) / 2  yield (3rn-1,2",7) nonlinear PLR'sfor all even rn 2 4 
(see [ la] ,  pp. 476-477). Thus, K(4) ,  K ( 6 ) ,  K ( 8 ) ,  P(6)', P(8)*, DG(4,l) DG(6,2) and 
'DG(S,3) are (8.16.5). (12 ,64 ,5) ,  (16,256,5),  (52,63,27),  (240,255,119), (11, IS,?), 
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(17,64,7) and (23,256,7) nonlinear PLR's, respectively. From the table in [ZO], 
we conclude that the best linear (8,16,e),  (12,64,e), (52,63,e), (11,16,e) and 
(17,64,e) PLR's satisfy e = 4,  4 5 e 5 5, 25 5 e 5 26, e = 7 and 5 5 e 5 7, 
respectively. The (8 ,16 ,5)  PLR (also known as the Nordstriim-Robinson code) and 
the (52,63,27) PLR thus beat the best linear PLR's with the same k and n. It is 
unknown to the authors whether K(m), P(m)* and DG(m,(rn - 2)/2) are superior 
to the best linear PLR's for infinitely many m, or for all m 2 2, m 2 2, and m 2 3, 
respec ti vely. 

3. Locally-Randomized Pseudo-random Number Generators 

Section 2 was devoted to sequence generators that stretch, for fixed k and n, a 
k-bit secret random key to an n-bit sequence. Since the framework of complexity 
theory is based on the analysis of asymptotic behavior, a pseudo-random number 
generator G is often defined [3,18] as an infinite class G = {Gk : k 2 1) of (Ic,n(k)) 
sequence generators Gh, where n is a polynomial function of the index k and where 
the computation time of each sequence generator is upper bounded by a polynomial 
function of k. Similarly, a statistical test SG = {Sf : k 2 1) for the pseudo-random 
number generator G [23] is an infinite class of probabilistic algorithms Sf which 
take as input a binary sequence of length n(k) and emit a binary output. G is said 
to pass the statistical test SG if and only if, for all polynomials P and for all but a 
finite number of integers k ,  

where p i c , G  denotes the probability that Sf emits a 1 if the input is the sequence 
generated by Gk for a random k-bit input, and where pf"'" denotes the probability 
that Sf emits a 1 if the input is a random sequence of length n(lc). 

Definition 4: Let e ( k )  be any positive integer-valued function. We shall call 
a pseudo-random number generator G degree e ( k )  locally-randomized if G passes 
every (not necessarily time-bounded) statistical test that examines not more than 
e( k) of the n.( k) bits. 

The following corollary is an immediate consequence of Theorem 1 and the fact 
that a k-bit row vector can be multiplied by a binary k x n(k) matrix in time 
polynomial in k. 

Corollary to  Theorem 1: Let t be any positive integer. For any function n(k)  
satisfying n( k) 5 k L  for all but finitely many k, there exist degree e ( k )  = [.k/(i log k ) J  
locally-ran domized pseu do-random number gen erat om. 
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The next theorem follows essentially from the fact that the information-theoretic 
entropy of the output of a sequence generator cannot be greater than the entropy 
of its input. 

Theorem 3: There exist no degree e( k) locally-randomized pseudo-random num- 
ber generators if e ( k )  > Ic for infinitely many k. 

The following theorem shows that the degree of perfect local randomness can 
be arbitrarily close to  the upper bound k. However, the existence proof is non- 
constructive since it is based on a random coding argument, and therefore the 
polynomial-time computability of the generator cannot be guaranteed. The proof 
is omitted. 

Theorem 4: Let t be any positive integer. For every 6 > 0 and for any function 
n(k) satisfying n ( k )  5 k* for all but finitely many le, there exist degree e ( k )  = 
L( 1 - e ) k J  locally-randomized, not necessarily polynomial-time computable, pseudo- 
random number generators. 

It is an open problem whether polynomial-time-computable degree e ( k )  locally- 
randomized pseudo-random number generators exist for which limk-.= e ( k )  log k/k > 
0, for instance, with limk,, e(k) /Ic  > C for some constant C with 0 < C 5 1. We 
conjecture that the answer is yes. Piveteau [16] has recently considered locally- 
randomized pseudo-random number generators in a setting where all computations 
are polynomially bounded and proved that there exist locally-randomized pseudo- 
random number generators if and only if there exist pseudo-random number gener- 
ators. 

4. Extensions of the Concept of Local Randomization 

So far we have considered statistical tests that are limited in the total number 
of bits of the pseudo-random sequence that are examined during the execution. 
This corresponds to a known-plaintext attack with a limited amount of plaintext 
data available when the pseudo-random sequence is the “running key” in an addi- 
tive stream cipher. In general, however, the nature of the enemy’s a priori and/or 
obtainable information about the plaintext is global rather than structured in bi- 
nary digits. For example, he might know that the plaintext satisfies certain parity 
checks (e.g., reduced ASCII code). It would therefore be desirable to extend the 
results of Sections 2 and 3 to purely information-theoretic results by allowing the 
statistical test to obtain the value of any random variable not giving more than e 
bits of information about the pseudo-random sequence (or, equivalently, about the 
plaintext sequence in the additive stream cipher described above). The following 
theorem, stated here without proof, shows that unfortunately such an extension is 
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not possible. 

meorem 5: For every ( I c ,  n) sequence generator G ,  there exists a function f using 
only one bit of information about the generated sequence, whose distinguishing 
probability IpfQIG - pfaiRI is lower bounded by 1 - 2k-”. 

This theorem shows not only that the amount of information that the enemy 
is allowed to obtain about the generated sequence but also the way in which the 
enemy can access information must be restricted appropriately if statements similar 
to theorems 1 and 4 should be proved. A possible relaxation of the restriction that 
the enemy obtains information about the pseudo-random sequence by observing 
only bits could, for example, be that he is allowed to obtain at most e panty 
checks, i.e., linear combinations, on the sequence bits. But even for this model, 
perfect “local” randomness cannot be achieved because n binary CTRV’s are jointly 
independent if and only if every nontrivial linear combination of these CTRV’s is 
a CTRV (see [223, or the XOR-Lemma in [ 5 ] ) .  On the other hand, if the enemy 
is not allowed to obtain arbitrary bits of the sequence but only subblocks of a 
certain length, i.e., if the basic alphabet is the set of binary rn-tuples rather than 
the binary alphabet, then (k, n) sequence generators achieving the information- 
theoretically maximal degree of perfect local randomness equal to k can sometimes 
be achieved. In coding theory, schemes having this property (e.g., Reed-Solomon 
codes) are called maximum distance separable, cf. [12]. The problem of determining 
the minimal alphabet size such that there exists a ( k , n , k )  PLR for given k and n 
is open. 

TWO other ways of generalizing the concept of a (k, n, E )  perfect local randomizer 
would be either to drop perfectness, i.e., to allow slight deviations from the uniform 
distribution, or to require perfect local randomness only “almost everywhere”, i.e., 
only for all but a small fraction of the subsets of e bits. 

5. ADDlications and Conclusions 

We are by no means suggesting that the sequence generators presented in Section 
2 be used as practical pseudo-random sequence generators. The two main reasons 
for this reticence are first that one cannot often validly assume that an enemy is 
restricted to obtaining only a few bits of the sequence acd second that most of our 
proposed schemes are linear and therefore easily unmasked by a simple appropriate 
parity check involving e + 1 bits. The latter weakness could be obviated by ap- 
plication of an invertible nonlinear transformation on the sequence space, but t.he 
first problem is intrinsic. Nevertheless, there are two potential practical crypto- 
graphic applications of the proposed perfect local randomizers. We first note that 
they are expanding transformations providing, in a certain sense, ideal “diffusion”. 
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If combined with appropriate compressing transformations providing "confusion", 
they might be excellent building blocks for practical ciphers. The second possible 
application is their use in key scheduling schemes (e.g., within block ciphers) where 
a small secret key must be stretched to a long key. 

In this paper we have explored the concept of local r'andomieation which leads 
to provable security, but only for an unfortunately weak notion of security. We not 
also that, once more in cryptologic research, results borrowed fiom the theory of 
error-correcting codes have turned out to be useful. 

Many proofs have been omitted in this paper. A more detailed version containing 
all proofs has been submitted to  the CRYPT0'89 special issue of the Journal of 
Cryptology and can be obtained from the authors now upon request. 
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