
Sparse Pseudorandom Distributions 

(Extended Abstract) 

O&d Goldreich 
Hugo Krawczyk 

Computer Science Dept. 
Technion 

Haifa, Israel 

Abstract. Pseudorandom distributions on n-bit strings are ones which cannot be effi- 
ciently distinguished from the uniform distribution on strings of the same length. 
Namely, the expected behavior of any polynomial-time algorithm on a pseudorandom 
input is (almost) the same as on a random (i.e. uniformly chosen) input. Clearly, the uni- 
form distribution is a pseudorandom one. But do such trivial cases exhaust the notion of 
pseudorandomness? Under certain intractability assumptions the existence of pseudoran- 
dom generators was proven, which in turn implies the existence of non-trivial pseudoran- 
dom distributions. In this paper we investigate the existence of pseudorandom distribu- 
tions, using no unproven assumptions. 

We show that sparse pseudorandom distributions do exist. A probability distribu- 
tion is called sparse if it is concentrated on a negligible fraction of the set of all strings 

(of the same length). It is shown that sparse pseudorandom distributions can be gen- 
erated by probabilistic (non-polynomial time) algorithms, and some of them are not sta- 
tistically close to any distribution induced by probabilistic polynomial-time algorithms. 

Finally, we show the existence of probabilistic algorithms which induce pseudoran- 
dom distributions with polynomial-time evasive support. Any polynomial-time algorithm 
trying to find a string in their support will succeed with negligible probability. A conse- 

quence of this result is a proof that the original definition of zero-knowledge is not robust 
under sequential composition. (This was claimed before, leading to the introduction of 
more robust formulations of zero-knowledge.) 
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1. INTRODUCTION 
In recent years, randomness has became a central notion in diverse fields of com- 

puter science. Randomness is used in the design of algorithms in fields as computational 
number theory, computational geometry, parallel and dismbuted computing, and is of 
course crucial to cryptography. Since in most cases the interest is in the behavior of effi- 
cient algorithms (modeled by polynomial-time computations), the fundamental notion of 
pseudorandomness arises. Pseudorandom distributions are those distributions which can- 
not be efficiently distinguished from the uniform dismbution on strings of the same 
length. 

The importance of pseudorandomness is in the fact that any efflcient probabilistic 
algorithm performs essentially as well when substituting its source of unbiased coins by a 
pseudorandom sequence. Algorithms can therefore be analyzed assuming they use 
unbiased coin tosses, and later implemented using pseudorandom sequences. Such 
approach is practically beneficial if pseudorandom sequences can be generated more 
easily than "truly random" ones. This gave rise to the notion of a pseudorandom genera- 
tor - an efficient deterministic algorithm which expands random seeds into longer pseu- 
dorandom sequences. 

Most of the previous work on pseudorandomness has in fact focused on pseudoran- 
dom generators. Blum and Micali [BM] and Yao [yl suggested the basic definitions and 
showed that pseudorandom generators can be constructed under certain intractability 
assumptions Several works [GGM, LR, Ll,  L2, GKL, ILL] further developed this 
direction. An important aspect of pseudorandom generation, namely its utility for deter- 
ministic simulation of randomized complexity classes, is further studied in [NWI. 

In our paper we investigate the notion of pseudorandomness when &coupled from 
the notion of efficient generation. The investigation will be carried out using no unpro- 
ven assumptions. The fmt question we address is the existence of non-trivial pseudoran- 
dom distributions. That is, pseudorandom distributions that are neither the uniform dis- 
mbution nor statistically close to it 2. Yao Iy] presents a particular example of such a 
distribution. Further properties of such distributions are developed here. 

We prove the existence of sparse pseudorandom distributions. A distribution is 
called sparse if it is concentrated on a negligible part of the set of all strings of the same 
length. For example, given a positive constant 6 c 1 we construct a probability distribu- 
aon concentrated on 26c of the strings of length k which cannot be distinguished from the 
uniform dismbution on the set of all k-bit strings (and hence is pseudorandom). 

Intractability assumptions in this approach are inavoidable as long as we cannot prove the ex- 

* The statistical distance between two probability distributions is defined as the sum (over all  
istence of one-way functions and. in particular, that P # NP. 

strings) of the absolute difference between the probabilities rhey assign to cach string. 
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Sparse pseudorandom dismbutions can even be uniformly generated by probabilis- 
tic algorithms (that run in non-polynomial time). These generating algorithms use less 
random coins than the number of pseudorandom bits they produce. Viewing these algo- 
rithms as generators which expand randomly selected short strings into much longer 
pseudorandom sequences, we can exhibit generators achieving subexponential expansion 
rate. This expansion is optimal since no generator expanding strings into exponential 
longer ones can induce a pseudorandom distribution (which passes non-uniform tests). 
On the other hand, one can use the subexponential expansion property in order to con- 
struct non-uniform generators of size slightly super-polynomial. (We stress that the 
existence of non-uniform polynomial-size generators would separate non-uniform-P from 
non-uniform-NP, which would be a major breakthrough in Complexity Theory). 

We also show the existence of sparse pseudorandom distributions that cannot be 
generated or even approximated by efficient algorithms. Namely, there exist pseudoran- 
dom distributions that are statistically far from any distribution which is induced by any 
probabilistic polynomial-time algorithm. In other words, even if efficient pseudorandom 
generators exist, they do not exhaust (nor even in an approximative sense) all the pseu- 
dorandom dismbutions. 

A stronger notion is that of evasive probability distributions. These probability dis- 
tributions have the property that any efficient algorithm will fail to find strings in their 
support (except with a negligible probability). Certainly, evasive probability distribu- 
tions are sparse, and even cannot be efficiently approximated by probabilistic algorithms. 
We show the existence of evasive pseudorandom distributions. 

Finally, we present an interesting application of these results to the field of zero- 
knowledge interactive proofs. It has been claimed m that the original definition of 
zero-knowledge (which appeared in [GMRl]) is not robust under sequential composition 
(and thus more robust variants were introduced [O,GMR2,TW,Fl). However, no 
rigorous proof of this claim has been given to date. Using evasive pseudorandom d i s m -  
butions we construct a zero-knowledge protocol which reveals significant information 
when executed twice in a sequence. 

. 

2. DEFINITIONS 
The formal definition of pseudorandomness (given bellow) is stated in asymptotical 

terms, so we shall not discuss single distributions but collections of probability distribu- 
tions, called probability ensembles. 

The support of a probability distribution is the set of elements that it assigns non-zero proba- 
bility. 
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Definition: A probability ensemble ll is a collection of probability distributions (xk ) k  K , 
such that K is an infinite set of indices (nonnegative integers) and for every k E K , nk is a 
probability distribution on the set of (binary) strings of length k . 
In particular, an ensemble { x k t J k E K  in which xk is a uniform distribution on { O , l ) k  is 
called a uniform ensemble. 
Next, we give a formal definition of a pseudorandom ensemble. This is done in terms of 
polynomial indistinguishability between ensembles. 

Definition: Let II = {xk} and rI'= {x;} be two probability ensembles. Let T be a proba- 
bilistic polynomial time algorithm outputting 0 or 1 (T is called a statistical test). Denote 
by p T ( k )  the probability that T outputs 1 when fed with an input selected according to the 
distribution xk. Similarly, p;(k)  is defined with respect to x;. The test T disn'nguishes 
between ll and ll' if and only if there exists a constant c >O and infinitely many k ' s  such 
that IpT(k)-p;(k)l > k - .  The ensembles ll and II' are called polynomially indisdn- 
guishable if there exists no polynomial-time statistical test that distinguish between them. 
Definition: A probabilistic ensemble is called pseudorandom if it is plynomially 
indistinguishable from a uniform ensemble. 
Remark: Some authors define pseudorandomness by requiring that pseudorandom 
ensembles be indistinguishable from uniform distributions even by non-uniform (polyno- 
mial) tests. We stress that the results (and proofs) in this paper also hold for these 
stronger definitions. 
In this work we are interested in the question of whether non-trivial pseudorandom 
ensembles can be effectively sampled by means of probabilistic algorithms. The follow- 
ing definition capture the notion of 'samplability'. 

Definition: A sampling algorithm is a probabilistic algorithm A that on input a smng of 
the form I", outputs a string of length n . The probabilistic ensemble nA induced by a 
sampling algorirhm A is defined as { x,"),, , where n," is the probabilistic distribution such 
that for any Y E {O,l)", x:Q)  = Prob(A( l " )=y) ,  where the probability is taken over the 
coin tosses of algorithm A .  A samplable ensemble is a probabilistic ensemble induced 
by a sampling algorithm. If the sampling algorithm uses, on input I",  less than n random 
bits then we call the ensemble snongfy-samplable. 
Traditionally, pseudorandom generators are defined as deferministic algorithms expand- 
ing short seeds into longer bit strings. With the above definitions one can define them as 
suong-sampling algorithms (the seed is viewed as the random coins for the sampling 
algorithm). 

We consider as trivial, pseudorandom ensembles that are close to a uniform ensemble. 
The meaning of "close" is formalized in the next definition. 
Definition: Two probabilistic ensembles I7 and IT' are statistically dose if for any posi- 
tive c and any sufficiently large n , C I x,, ( x )  - K,,'(x) I < n-c. 

X E  (0 , l )"  
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A special case of non-trivial pseudorandom ensembles are those ensembles we call 
"sparse". 

Definition: A probabilistic ensemble is called sparse if (for sufficiently large n 's) the 
support of x, is a set of negligible size relative to the set {W}" (i-e for every c > O  and 
sufficiently large n ,  Isupport(x,)l < )I* 2"). 

Clearly, a sparse pseudorandom ensemble cannot be statistically close to a uniform 
ensemble. 

Notation: will denote the set (0,1 lk. 

3. THE EXISTENCE OF SPARSE PSEUDORANDOM ENSEMBLES 
The main result in this section is the following Theorem. 

Theorem 1: There exist strongly-samplable sparse pseudorandom ensembles. 

In order to prove this theorem we present an ensemble of sparse distributions which are 
pseudorandom even against non-uniform distinguishers. These distributions assign equal 
probability to the elements in their support. We use the following definition. 
Definition: A set S E Ik is called ( z ( k )  , ~ ( k )  )-pseudorandom if for any (probabilistic) Cir- 

cuit C of size ~ ( k )  with k inputs and a single output 

I P C G )  - p c ( I d  I S E ( k )  

where pc  (S) (resp. pc  (Ik)) denotes the probability that C outputs 1 when given elements 
of S (resp. I k ) ,  chosen with uniform probability. 
If for a circuit C and a set S E I ~  the above inequality does not hold then we say that the 
the set S is &(k)-distingukhed by the circuit C . 
Note that a collection of uniform distributions on a sequence of sets S S2 ,... where each 
Sk is a (~(k), ~(k))-pseudorandom set, constitutes a pseudorandom ensemble, provided 
that both functions z ( k )  and &(k) are super-polynomial, i.e. grow faster than any polyno- 
mial. Our goal is to prove the existence of such a collection in which the ratio IS, 1/2k is 
negligibly small. 
Remark: In the following we consider only deterministic circuits (tests). The ability to 
toss coins does not add power to non-uniform tests. Using a standard averaging argu- 
ment one can show that whatever a probabilistic non-uniform distinguisher C can do, 
may be achieved by a deterministic circuit in which the "best coins" of C are incor- 
porated. 

The next Lemma measures the number of sets which are E(k)-distinguished by a given 
circuit. Notice that this result does not depend on the circuit size. 

Lemma 2: For any k-input Boolean circuit C ,  the probability that a random set S of 
size N is &(k)-distinguished by C is at most 2 exp [ -2N$(k , l !  . (The function exp(.) 
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denotes exponentiation to natural base). 

Proof: Let Lc(k )  be the set { x ~ I ~ : C ( x ) = l } .  Thus, p c ( l k ) =  and ILc(k>l  
Zk  

IS  &(k)I 
PCO)' I S I  

Consider the set of strings of length k as a urn containing 2k balls. Let those balls in 
&(k) be painted white and the others black. The propomon of white balls in the urn is 
clearly p C ( I k ) ,  and the proportion of white balls in a sample S of N balls from the urn is 
p c ( S ) .  (We consider here a sample without replacement, i.e. sampled balls are not 
replaced in the urn). 
Lemma 2 follows by using the Chernoff-type inequality due to W. Hoeffding [HI (see 
Appendix) 

where the probability is taken over all the subsets S s I ,  of size N ,  with uniform probabil- 
ity. H 

The following Lemma states the existence of pseudorandom ensembles composed of uni- 
form distributions with very sparse supporc. 
Lemma 3: Let k ( n )  be any subexponentid function of n (i.e. k(n)=exp(o (n) )  14. There 
exist super-polynomial functions TT(.) and &-It) ,  and a sequence of sets S ,Sz...., such that 
S,, is a ( z (k (n ) )  ,E(k(n)))-pseudorandom subset of Ik(,,, and IS,, I =2". 

Proof: Fix n and let R = k ( n ) .  We show the existence of a set S clk of size 2" which is 
( ~ ( k )  , E(k))-pseudorandom, where z() and Z*(-) are suitable chosen super-plynodal 
functions. 

The number of Boolean circuits of size ~ ( k )  is at most 2qk) .  Thus, to show the existence 
of a set S that is not ak)-distinguished by any of these circuits it is sufficient to show that 
each circuit E(k)-distinguishes at most 23(k) of the sets of size 2". Using Lemma 2, this 
holds provided that 

2"&2(k) > * ( k )  (1) 

It is easy to see that for any subexponential function k ( n )  we can find super-polynomial 
functions &-I(.) and T(-) such that inequality (1) holds for each value of n. H 

The following Lemma states that the sparse pseudorandom ensembles presented above 
are strongly-samplable. This proves Theorem 1. 

Lemma 4: Let k ( n )  be any subexponential function of n . There exist (non-polynomial) 
generators which expand random strings of length n into pseudorandom strings of length 

~ 

o ( n )  denotes any functionf(n) such that limf(n)/n=O 
L 1  
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kb). 
Proof: Let T(.) and E ( . )  be as in Lemma 3. We construct a generator which on input a 
seed of length n finds the ( ~ ( k  (n)) , ~ ( k  (n)))-pseudorandom set S, s Zk(,) whose existence 
is guaranteed by Lemma 3, and uses the n input bits in order to choose a random element 
from S, . Clearly, the output of the generator is pseudorandom. 

To see that the set S, can be effectively found, note that it is effectively testable whether 
a given set S of size 2" is ( ~ ( k )  , @))-pseudorandom. This can be done by enumerating 
all the circuits of size ~ ( k )  and computing for each circuit C the quantities p c ( S )  and 
pc( lk) .  Thus, our generator will test all the possible sets S sZk of size 2" until S, is 
found. H 

Remark 1: Inequality (1) defines a trade-off between the expansion function k ( n )  and the 
size of the tests (circuits) resisted by the generated ensemble. The pseudorandom ensem- 
bles we construct may be "very" sparse, in the sense that the expansion function k ( n  ) can 
be chosen to be very large (e.g. 2 "). On the other hand if we consider "mcderate" 
expansion functions such as k (n ) = 2n ,  we can resist rather powerful tests, e.g. circuits Of 

size P4. 
Remark 2: The subexponential expansion, as allowed by our construction, is op- 
since no generator exists which expands smngs of length n into strings of length 
k(n)=exp(O (n)). To see this, consider a circuit of size k(n) ' ( ' )  which incorporates the (at 
most) 2" output smngs of the generator. Clearly, this circuit constitutes a (non-uniform) 
test distinguishing the output of this generator from the uniform distribution on I k ( , ) .  

Remark 3: The subexponential expansion implies that the supports of the resultant pseu- 
dorandom distributions are very sparse. More precisely, our construction implies the 
existence of generators which induce on smngs of length k a support of size slightly 
super-polynomial (i.e. of size k u ( k )  for an arbitrary nondecreasing unbounded function 
u(k)). Thus, by wiring this support into a Boolean circuit, we are able to consmct non- 
uniform generators of size slightly super-polynomial. (On input a seed s the circuit (gen- 
erator) outputs the s-th element in this "pseudorandom" support). Let us point out that an 
improvement of this result, i.e. a proof of the existence of non-uniform pseudorandom 
generators of polynomial size, will imply that non-uniform-P f non-uniform-NP !. This 
follows by considering the language { x  E [ I ,  : x is in the image of G ), where G is a pseu- 
dorandom generator in non-uniform-P. Clearly, this language is in non-uniform-NP, but 
not in non-uniform-P, otherwise a deciding procedure for it can be transformed into a test 
distinguishing the output of G from the uniform distribution on 1,. 

Remark 4: The (uniform) complexity of the generators constructed in Lemma 4 is 
slightly super-exponential, i.e. 2k"(k), for unbounded u( . ) .  (The complexity is, up to a 

polynomial factor, 2t(k).(2"+2k).( 2n ), and 2" is, as in Remark 3 ,  slightly super- 
polynomial in k ) .  We stress that the existence of pseudorandom generators running in 
exponential time, and with arbitrary polynomial expansion function, would have 

r 

21 
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interesting consequences in Complexity Theory as BPP E nDTIME(T) [Y, NWJ. 
U O  

4. THE COMPLEXITY OF APPROXIMATING PSEUDORANDOM ENSEM- 
BLES 

In the previous section we have shown sparse pseudorandom ensembles which can 
be sampled by probabilistic algorithms running super-exponential time. Whether is it 
possible to sample pseudorandom ensembles by polynomial-time algorithm Or even 
exponential ones, cannot be proven today without using complexity assumptions. On the 
other hand, do such assumptions guarantee that each samplable pseudorandom ensemble 
can be sampled by polynomial, or even exponential means? We give here a negative 
answer to this question, proving that for any complexity function $(a) there exists a 
samplable pseudorandom ensemble which cannot be sampled nor even "approximated" 
by algorithms in RTIME($). The notion of approximation is defrned next. 
Definition: A probabilistic ensemble n is approximated by a sampling algorithm A if the 
ensemble IIA induced by A is statistically close to TI. 

The main result of this section is stated in the following Theorem. 
Theorem 5: For any complexity (constructive) function 4(.), there is a strongly sampl- 
able pseudorandom ensemble that cannot be approximated by any algorithm whose mn- 
ning time is bounded by +. 
Proof: We say that two probability distributions x and d on a set X are %-close if 

c Ix(x)-d(x)l < ? A .  
x a X  

We say that a sampling algorithm M 'A-approximates a set S sIk if the probability distri- 
bution x p  induced by M on lk and the uniform distribution Us on S are %-close. 

We show that for any sampling algorithm M most subsets of I, of size 2" are not $5- 
approximated by M (for k sufficienly large with respect to n). This follows from the next 
Lemma. 
Lemma 6: Let x be a probability distribution on Ik. The probability that x and Us are 
'h-close, for S randomly chosen over the subsets of I, of size 2", is less than ( ~ 2 ) ~ - " - l .  

Proof: Notice that if two different sets S and T are %-close to x ,  then the two sets are 
close themselves. More precisely, we have that C I U s ( x ) - x ( x ) l  c - 1 and 

2 x E I ,  
1 C IUT(x)-n(x)I < -. Using the mangle inequality we conclude that 

C I Us(x)-iY~(x>l < 1. Denoting the last sum by 0 and the symmetric difference of S 
x E t k  2 

I E I ,  

and T by D ,  we have that ID 1 . -  1 < 0 < 1 (this follows from the fact that Us and U, 
2" 
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assign uniform probability to the 2" elements of S and T ,  respectively). But this implies 
that ID I c2", and then (using IS I -t IT I = ID I +2,1S n T  I )  we get IS nT I >2"/2 .  

Let T be a particular subset of I k  of size 2" which is %-close to x. From the above a rp-  
ment it follows that the collection of subsets of size 2" which are 'h-close to x is included 
in the collection (S G : I S I =2" , IS n T I > 2" / 2 ) .  Thus, we are able to bound the proba- 
bility that x is 'h-close to a random set S of size 2", by the probability of the following 
experiment. Fix a set T GI, of size 2", and take at random a set S of 2" elements among 
all the smngs in Ik. We are interested in the probability that IS n T  I > 2"/2. Clearly, the 

expectation of I S nT I is I I ' I I . Using Markov inequality for nonnegative random 
2k 

variables we have 

and then 

Prob ( I  S n T  1 > 2"/2) < 2/2k-" (2) 

The lemma follows. 0 

We now extend the pseudorandom generator constructed in Lemma 4, in order to obtain 
a generator for a pseudorandom ensemble which is not approximated by any @-time sam- 
pling algorithm. On input a string of length n ,  the generator proceeds as in Lemma 4. 
Once a (z(k (n ) )  , ~ ( k  ( n ) )  )-pseudorandom subset S, is found, the generator checks whether 
S,, is %-approximated by some of the f is t  n Turing machines, in some canonical 
enumeration, by runriing each of them as a sampling algorithm for +(k(n)) steps. Clearly, 
it is effectively testable whether a given machine M %-approximates a given set S . If the 
set S, is %-approximated by some of these machines, it is discarded and the next 
S d k  , IS I =2" is checked (first for pseudorandomness and then for approximation). 

In section 3 we have actually shown that the probability that a set S is (~(k(n)) ,&(k(n)))-  
pseudorandom is almost 1. On the other hand, the probability that a set S is %- 
approximated by n sampling machines is, using Lemma 6,  less than n/2k("pn'"-1. For suit- 
able k (.), e.g. k (n  ) 2 2 n ,  this probability is negligible. Thus, we are guaranteed to find a 
set S, which is ( ~ ( k  (n 1) , ~ ( k  (n 1) )-pseudorandom as well as not 'h-approximated by the 
first n sampling algorithms running $-time. The resultant ensemble is as stated in the 
theorem. 
Remark: The result in Theorem 5 clearly relies on the fact that the sampling algorithms 
we have run are uniform ones. Nevertheless, if we use Hoeffding inequality to bound the 
left side in (2), we get a much better bound, which implies that for any constant a< 1, 
there existe strongly-samplable pseudorandom ensembles that cannot be approximated 
by Boolean circuits of size 2"". 
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5. POLYNOMIAL-TIME EVASIVE PSEUDORANDOM ENSEMBLES 
In this section we prove the existence of pseudorandom ensembles which have the 

property that no polynomial-time sampling algorithm will output an element in their sup- 
port, except for a negligible probability. 
Definition: A probability ensemble ll= (?tk } k  is called polynomial-time evasive if for 
any plynomid-time sampling algorithm A ,  any constant c and sufficiently large k, 

Prob [ A ( l k )  E s q p r t ( X k ) l  < k' 

( s q p o n ( z k )  denotes the set ( x  E 1,: xk(x)  > 0) ), 

Notice that evasiveness does not imply pseudorandomness. For example, any evasive 
ensemble remains evasive if we add to each string in the support a leading '0', while the 
resultant distributions are obviously not pseudorandom. On the other hand, an evasive 
pseudorandom ensemble is clearly sparse. 
Following is the main result of this section. An interesting application of this result 
appears in section 6. 
Theorem 7: There exist (strongly-samplable) polynomial-time evasive pseudorandom 
ensembles. 
Proof: The proof outline is similar to the proof of Theorem 5.  We again extend the gen- 
erator of Lemma 4 by testing whether the (z(k (n) )  , ~ ( k  (n)))-pseudorandom set s,, found 
by that generator on input of length n ,  evades the first n Turing machines (run as 
polynomial-time sampling algorithms). We have to show that for each sampling algo- 
rithm M there is a small number of sets S r I k  of size 2" for which machine M outputs an 
element of S with significant probability. Throughout this proof we shall consider as 
"significant" a probability that is greater than 2%2,, (This choice is motivated by a later 
application of this Theorem. Any negligible portion suffices here. Thus, we are assum- 
ing k 2 4 n ) .  We need the following technical Lemma. 
Lemma 8: Let n: be a fixed probability distribution on a set U of size K. For any S G U 
denote n:(S) = C x(s).  Then 

S O S  

Prob ~ ( S ) > E  < - N 1 EK 
where the probability is taken over all the sets S (z U of size N with uniform probability. 

Proof: Consider a random sample of N distincr elements from the set U. Let Xi , l l i W .  
be random variables so that X i  assumes the value ~ ( u )  if the i-th element chosen in the 

sample is u .  Define the random variable X to be the sum of the Xi's (i.e. X = E X i ) .  

Clearly, each Xi has expectation l/K and then the expectation of X is NIK. Using Mar- 
kov inequality for nonnegative random variables we get 

N 

i=l 
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proving the Lemma. 0 

Let x? be the probability distribution induced by the sampling algorithm M on Zk. Con- 
sider a randomly chosen S cIk of size 2". Lemma 8 states that 

1 Prob x F ( S ) >  - < - [ ::] 22" 
(3) 

Thus, we get that only 1/2* of the subsets S fail the evasivity test for a single machine. 
Running n such tests the portion of failing sets is at most n/2&.  Therefore, there exists a 
set passing all the distinguishing and evasivity tests. (Actually, most of the sets of size 2" 
pass these tests). This completes the proof of the Theorem. m 
Remark 1: Actually, we have proven that for any uniform time-complexity class c, 
there exist pseudorandom ensembles which evades any sampling algorithm of the class 
C. Notice that no restriction on the running time of the sampling machines is required. 
It is interesting to note that we cannot find ensembles evading the output of non-uniform 
circuits of polynomial-size, since for each set S there exists a circuit which outputs an 
element of S with probability 1. Thus, the results in this sections imply the results of sec- 
tion 4 on unapproximability by uniform algorithms, but not the unapproximability by 
non-uniform circuits (see remark after the proof of Theorem 5). 
Remark 2: For the results in section 6, we need a slightly stronger result than the one 
stated in Theorem 3. This application requires a pseudorandom ensemble that evades not 
only sampling algorithm receiving l k  as the only input, but also algorithms having an 
additional input of length n (the parameters k and n are as defined above). The proof of 
Theorem 3 remains valid also in this case. This follows by observing that each such 
algorithm defines 2" distributions, one for each possible input of length n. Thus, the n 
algorithms we run in the above proof contribute n.2" distributions. Using the above 
bound (3) we can guarantee the existence of sets S that evade any of these distributions. 

6. ON THE SEQUENTIAL COMPOSITION OF ZERO-KNOWLEDGE PROTO- 
COLS 

In this section we apply the results of section 5 in order to demonstrate a weakness 
in the original definition of zero-knowledge interactive proofs. Before presenting this 
result we shall give an informal outline of the notions of interactive-proofs and zero- 
knowledge. For formal and complete definitions, as well as the basic results concerning 
these concepts, the reader is referred to [GMRl, GMW]. 

An interactive proof for a language L is a two-sided protocol in which a computa- 
tionally powerful Prover convinces a probabilistic polynomial-time Verifier that their 
common input x belongs to the language L. If the assertion is me ,  i.e. x E L , then the 
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verifier will be convinced of its validity with very high probability. If the assertion is 
false then the probability to convince the verifier of the contrary is negligibly small, no 
matter how the prover behaves during the execution of the protocol. 

An interactive proof is called zero-knowledge if no polynomial-time verifier (even 
one that arbitrarily deviates from the predetermined program) gains no information from 
the execution of the protocol except the knowledge whether x belongs to L .  That is, any 
polynomial-time computation based on the conversations with the prover, on hput x E L , 
can be simulated by a probabilistic polynomial-time machine (“the simulator”) that gets x 
as its only input. More precisely, let [P ,V* ] ( x )  denote the probability distribution gen- 
erated by the interactive machine (verifier) V’ which interacts with the prover P on $put 
x E L. We say that an interactive proof is zero-knowledge if for all probabilistic 
polynomial-time machines V* , there exists a probabilistic polynomial-time algorithm 
Mr (called a sirnulafor) that on input x E L produces a probability dismbution M&) 
that is polynomially indistinguishable from the dismbution [P ,V* I(%). 
( T h i s  notion of zero-knowledge is also called computational zero-knowledge. The results 
in this section concern only this notion 5) .  

A natural requirement from the notion of zero-knowledge proofs is that the informa- 
tion obtained by the verifier during the execution of a zero-knowledge protocol will not 
enable him to extract any additional knowledge from subsequent executions of the same 
protocol. That is, it would be desirable that the sequential composition of zero- 
knowledge protocols would yield a protocol which is itself zero-knowledge. Such a pro- 
perty is crucial for applications of zero-knowledge protocols in cryptography. See [O] for 
a formal definition of “sequential compositim”, and further motivation of its need. 

In this section we prove that the original definition of (computational) zero- 
knowledge introduced by Goldwasser, Micali and Rackoff in [GMRl] (as we have 
sketched above) is not closed under sequential composition. Several authors have previ- 
ously observed that this definition probably does not guarantee its robustness under 
sequential composition, and hence have introduced more robust formulations of zero- 
knowledge [GMR2,0 ,  TW, F]. 

Feige [q Proposed a protocol that appears to be zero-knowledge when executed 
once but reveals signifkant information during a second execution. Using the underlying 
idea of this protocol and the results of the previous section we prove the following 
Theorem 9: Computational Zero-Knowledge ([GMR I] formulation) is not closed under 
sequential composition, 

Other definitions were proposed in which it is required that the distribution generated by the 
simulator is identical to the distribution of conversations between the verifier and the prover (per- 
fect zero-knowledge), or at least statistically close (sturisricul zero-knowledge). See Fo,GMR2] 
for further details. 
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Proof: Let G be a generator as constructed in Theorem 7, i.e. its output induces a pseu- 
dorandom and polynomial-time evasive ensemble. Let G expand strings of length n into 
smngs of length k = 4 n ,  and let S, G I d ,  be the set of images of G on strings of length n . 
Also, let K be a hard Boolean function, in the sense that the language LK = ( x  : K ( x )  = 1) is 
not in BPP. 

We define the following interactive-proof protocol O , V >  for the language 
L = (O,l}* . (Obviously, this language has a trivial zero-knowledge proof in which the 
verifier accepts every input, without carrying out any interaction. We intentionally 
modify this protocol in order to demonstrate a zero-knowledge protocol which fails 
sequential composition). 

Let x be the common input for P and V ,  and let n denote the length of x .  The verif- 
ier V begins by sending to the prover a randomly chosen string s of length 4n. The 
prover P checks whether s E S, If this is the case then P sends to V the value of K ( x ) .  
Otherwise (s I$ S,), P sends to V a string so randomly selected from S,. In any case the 
verifier accepts the input x (as belonging to L ) .  

We stress that the same generator G is used in all the executions of the protocol. 
Thus, the sets S, do not depend on the specific input to the protocol, but only on its 
length. Therefore, the string sol obtained by the verifier in the first execution of the p m  
tocol, enables him to deviate from the protocol during a second execution in order to 
obtain the value of K(x ' ) ,  for any x' of length n . Indeed, consider a second execution Of 
the protocol. this time on input x'. A "cheating" verifier which sends the string s =so 
instead of chosing it at random, will get the value of K(x')  from the prover, Observe that 
this cheating verifier obtain information that cannot be computed by itself. There is no 
way to simulate in probabilistic polynomial-time the interaction in which the prover 
sends the value of K ( x  3. Otherwise the language LK is in BPP. 

Thus, it is clear that the protocol is not zero-knowledge when composed twice. On 
the other hand, the protocol is zero-knowledge (when executed the first time). To show 
that, we present for any verifier V *  , a polynomial-time simulator Mv. that can simulate 
the conversations between V L  and the prover P. There is only one message sent by the 
prover during the protocol- It sends the value of K ( x ) ,  in case that the smng s sent by the 
verifier belongs to the set S,, and a randomly selected element of S, , otherwise. By the 
evasivity condition of the set S, , there is only a negligible probability that the first case 
holds. Indeed, no probabilistic polynomial-time machine (in our case, the verifier) can 
find such a smng s E S , ,  except with insignificant probability (no matter the input x to 
the protocol is; see Remark 2 following the proof of Theorem 7). Thus, the simulator can 
succeed by always simulating the second possibility, i.e. the sending of a random element 
SO from S,. This step is simulated by randomly choosing so from 14, rather than from S,. 
The indistinguishability of this choice from the original one follows from the fact that 
each S, is a pseudorandom subset of I,, , and that so is chosen at random from S, . I 
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Remark: For any language L having a zero-knowledge interactive proof, one can present 
a zero-knowledge protocol which fails sequential composition. Simply, modify the on@- 
nal protocol for L as done in the above proof. (There, we have arbitrarily chosen 
L ={0,1}'>. 
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APPENDIX: HOEFFDING INEQUALITY [HI 

Suppose a urn contains u balls of which w are white and u-w are black. Consider a ran- 
dom sample of s balls from the urn (without replacing any balls in the urn at any stage). 

Hoeffding inequality states that the proportion of white balls in the sample is close, with high 
probability, to its expected value, i.e. to the proportion of white balls in the u r n  More precisely. 
let x be a random variable assuming the number of white balls in a random sample of size s. 
Then, for any e, O l e l l  

f- 7 

This bound is oftenly used for the case of binomial distributions (i.e when drawn balls are 
replaced in the urn). The inequality for that case is due to H. Chemoff [C]. More general inequal- 
ities appear in Hoeffding's paper [HI, as well as a proof that these bounds apply also for the case 
of samples without replacement. 
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