
Bit Commitment Using Pseudo-Randomness *

(Extended Abstract)

Moni Naor

IBM Almaden Research Center

650 Harry Road

San-Jose CA 95120

Abstract

We show how a pseudo-random generator can provide a bit commitment

protocol. We also analyze the number of bits communicated when parties

commit to many bits simultaneously, and show that the assumption of the

existence of pseudorandom generators suffices to assure amortized O(1) bits of

communication per bit commitment.

1 Introduction

A bit commitment protocol is a basic component of many cryptographic protocols.

One party, Alice, commits to the other party, Bob, to a bit b, in such a way that

Bob has no idea what b is. At a later stage Alice can reveal the bit b and Bob can

verify that this is indeed the value to which Alice committed. A good way to think

about it is as if Alice writes the bit and puts it in a locked box to which only she has

the key. She gives the box to Bob (the commit stage) and when the time is ripe, she

opens it and Bob knows that the contents were not tampered since the box was at

his possession.

Bit commitment has been used for zero knowledge protocols (GMWlJ, (BCC],

identification schemes IFS], Multi party protocols [GMW2], [CDG], and can imple

ment Blum’s coin flipping over the phone [B].

A current research program in cryptography is to base the security on as general as-

sumptions as possible. Past successes of the program had been in establishing various

‘Part of this work done while author was at UC Berkeley. Research supported by NSF gant

CCR 88 - 13632

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 128-136, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

129

primitives on the existence of one-way functions or permutations or on the existence
of trapdoor functions. The most general (computational complexity) assumption un-
der which bit commitment was known to be possible is that one way permutations
exist [GMWl]. In this paper we show that given any pseuderandom generator, a bit
commitment protocol can be constructed. This is a weaker condition, since Yao Tyao]
has shown that pseuderandom generators can be based on one-way permutations.
A pseudo-random generator is a function that maps a string (the seed) to a longer
one, such that if the seed is chosen at random, then the output is indistinguishable
from a truly random distribution for all polynomial time machines. Very recently
Impagliazzo, Levin and Luby [ILL] have shown that given any one way function (not
necessary a permutation), a pseudo-random generator can be constructed. On the
other hand, Impagliazzo and Luby [IL] have argued that the existence of one-way
functions is a prerequisite for any protocol that must rely on computational complex-
ity. Thus we can conclude that if any computational complexity based cryptography
is possible, then bit commitment protocols exist, and so do the protocols that rely on
bit commitment, such as zero-knowledge proofs and identification schemes.

What is the communication complexity of a bit commitment protocol (i.e. how
many bits must be transferred during the execution of the protocol)? It cannot be
the case that only a fixed number of bits will be exchanged during the execution
of the protocol, otherwise after the commit stage Bob can guess with non negligible
probability what Alice would send in the revealing stage, and can verify that the guess

is consistent with what she sent so far and deduce the value of the bit. However, in
many applications Alice wants to commit to a collection of bits b, &, . . . b, and they
are to be revealed at the same time. These applications include coin flipping over the
phone and zero-knowledge protocols such as Impagliazzo and Yung [IY]. Furthermore,
Kilian, Micdi and Ostrovsky [KMO] have shown that many of the known protocols
for zero knowledge can be converted to ones that have this property. Therefore it is
desirable to amortize the communication complexity of bit commitment. We show
that if m is large enough, at least linear in the security parameter n, then Alice can
commit to b, b z , . . . 6 , while exchanging only O(1) bits per bit commitment. The
total computational complexity of the protocol is the same as the complexity of the
protocol for committing to one bit.

In the next section we give formal definitions of the problem and the assumptions.
In Section 3 we show how the commit can be implemented using a pseudo-random
generator. Section 4 shows how to get the amortized communication complexity down
to O(1) per bit.

130

2 Definitions
A bit commitment protocol consists of two stages:

0 The commit stage: Alice has a bit b to which she wishes to commit to Bob. She
and Bob exchange messages. At the end of the stage Bob has some information
that represents b.

0 The revealing stage: at the end of which Bob knows b.

The protocol must obey the following: For all polynomials p and for large enough
security parameter n

1 1. After the commit stage Bob cannot guess b with probability greater than $+m.
2. Alice can reveal only one possible value. If she tries to reveal a different value

she is caught with probability at least 1 - h.
In defining the properties that a bit commitment protocol must obey we have

assumed a scenario where Bob cannot guess b with probability greater than prior
to the execution of the commit protocol. In the more general case, Bob has some
auxiliary input that might allow him to guess b with probability q > $. The definition
for this case is that as a result the commit stage the advantage that Bob gains in
guessing b is less than A. All the results of this paper hold for the general case.

Pseudo-Random Generators

G : (0,l)" H (0, l}m(n) is a a pseudo-random generator if for all polynomials p and
all polynomial time algorithms A that attempt to distinguish between outputs of the
generator and truly random sequences, except for finitely many n's:

Let rn(n) be some function such that m(n) > n.

1 IPr[A(y) = 11 - Pr[A(G(s)) = 111 < -
P b)

where the probabilities are taken over y E (0, l}"(") and s E (0,l)" chosen uniformly
at random.

Remark: We could have defined pseudo-random generators relative to polynomial
sized circuits. The results in this paper would be the same in this case.

It is known that if pseudo-random generators exist for any rn(n) > n, then they
exists for all rn polynomial.in n [GGM]. We can treat the pseudo-random generator
as outputting a sequence of unspecified length, of which we can examine only a fixed
prefix (whose length is polynomial in n, the seed length).

131

In the rest of the paper we will assume some pseudo-random generator G. Let
n be a security parameter which is assumed to have been chosen so that no feasible
machine can break the pseudo-random generator for seeds of length n. We will use
Gl(s) to denote the first 1 bits of the pseudo-random sequence on seed s E (0, l}".
B;(s) will be used to denote the i th bit of the pseudo-random sequence on seed s.

3 The Bit Commitment

A property of pseudo-random sequences that is natural to apply in order to achieve
bit commitment is the unpredictability of the next bit: it is known that given the
first n bits of a pseuderandom sequence, any polynomial time algorithm that tries
to predict the next bit in the sequence has probability smaller than f + t o succeed
for any polynomial p (n) . (In fact, Blum and Micali [BM] used this property to define
pseudo-randomness and Yao [Yao] gas shown that the two definitions are equivalent.)

As a first attempt, consider the following protocol:

Commit stage - Alice selects seed s E {O,1} " and sends G m (s) and B,+i(s) @ b.
(6 is the bit Alice is committed to.)

0 Reveal stage - Alice sends s, Bob verifies that Gm(s) is what Alice sent him
before and computes b = (s) e (B,+1(3) @ b)

This protocol has the property that Bob cannot guess the bit that Alice commits
to before the revealing stage, except with probability smaller than f + &, because
he does not have the power to predict the pseudo-random sequence. On the other
hand, Alice might be able to cheat: if she finds two seeds s1 and s2 such that Gm(S1) =

G m (s z) , but B m + l (s l) # B m + l (S z) , then she can reveal any bit she wishes (by sending
51 or 52) . There is nothing in the definition of pseudo-random generators that forbids
the existence of such pairs. Furthermore, given any pseudo-random generator G, one
can construct another pseudo-random generator G' that has such pairs.

There is no way to force Alice to stick to one seed, since there may be two seeds
that yield the same sequence. However, what the following protocol does is to force
Alice to stick to the same sequence, or she will be caught with high probability.

Bit Commitment Protocol

0 Commit stage -
4

1. Bob selects a random vector R = (rl, 7 3 , . . . rgn) where r; E (0 , l) for
1 5 i 5 3n and sends it to Alice.

132

2. Alice selects a seed s E (0 , l) " and sends to Bob the vector 6 =

(d, , dz, . . . d3,,) where

B;(s) if ri = 0
B;(s) @ b if r, = 1

d; =

Reveal stage - Alice sends s and Bob verifies that for all 1 5 i 5 3n, if ri = 0
then d; = B;(s), and if ri = 1 then c; = B;(s) @ b.

This protocol maintains the property that Bob learns nothing about the bit b,
otherwise we claim that Bob has the power to distinguish between outputs of the
pseudo-random generator and truly random strings: if Alice had chosen a truly ran-
dom sequence instead of a pseudo-random sequence, then Bob would not have learned
anything about b, since all vectors 6 are equally likely, no matter what b is. If there
exists a polynomial time Bob (call him Bob') that can learn something about b when
Alice uses a pseudo-random sequence, then Bob' can be used to construct a distin-
guisher between outputs of G and truly random sequences. Given a sequence 5, run
the commit stage of the protocol with Alice and Bob', where Alice commits to a
random b and instead of a creating a pseudo-random sequence uses 2. Let Bob' guess
b. If he guesses correctly decide that x is pseud*random, otherwise decide that 5
is truly random. The difference in the probability of deciding that the sequence is
pseudo-random between a random sequence and a pseuderandom sequence is equal
to the advantage Bob' has of guessing b in case x is a pseudo-random sequence.

How can Alice cheat? Her only chance to cheat is if there exist two seeds s1 and
s2 such that GBn(sl) and G~,,(s*) agree in all positions i where ri = 0, and totally
disagree in all positions i where r; = 1. We say that such a pair fools 2.
Claim 3.1 The Probability that there ezists a pair of seeds s1 and sz that fools R' is
at most 2-", where the probability is taken over the choices of R'.
Proof: If a pair s1,32 fools R, then we know that r; = B,(sl) @ Bi(s2). Therefore, a
pair 51 and s2 fools exactly one 2. There are 22" pairs of seeds and 23" vectors R.
Hence the probability that there exists a pair that can fool the R' that Bob chose is
at most = 2 4 .

+

We can summarize by

Theorem 3.1 I f G is a pseudo-random generator, then the bit commitment protocol
presented obeys the following: For all polynomials p and for large enough security
parameter n

1. Af ter the commit stage Bob cannot guess b with probability greater than f + &
2. Alice can reveal only one possible bit, ezcept with probability less than &j

133

4 Efficient Commit to Many Bits
The protocol given in the previous section has communication cost of O(n) bits. If
Alice wants to commit t o many bits h, b, . . . b, which she will reveal simultaneously,
then she can do better.

The idea is to use many bits to force Alice to stick to one sequence and use that
sequence to commit to many bits.

Suppose we implement a protocol similar to the one in the previous section, but
for the part of the pseuderandom sequence that Bob request to see its Xor with €J

we give its bit-wise Xor with 4 , b2,. . . b,. Alice might be able to alter one of the bi's,
since it is enough that there exists a pair of seeds that agree on all the bits but one.

We will prevent this from happening by using error correcting codes with large
distance between code words. Let C C (0 , l)Q be a code of 2"' words such that the
hamming distance between any c1,cz E C is at least E . q. We will also require that
there will be an efficiently computable function E : (0,l)" H (0,l) ' for mapping
words in (0,l)" to C.

What are the requirement from the code? As we shall see, log & q must be at
least 372, and we want q/m to be a fixed constant. Such codes exist, and specifically
the Justesen code is a constructive example [Ju] . For the amortization to work it
sufficient that m be linear in n.

For a vector R = (r l , r2,. . . r k) with r; E (0 , l) and with exactly q indices i such
that r; = 1 let GR(s) denote the vector A = (ul ,az, . . .uq) where a; = Bjc;,(s) and
j (i) is the index of the i th 1 in 2. If el , e2 E (O , l) Q , then el @ e2 denotes the bitwise
Xor of el and e2.

+

4

Commit t o Many Bits Protocol
Alice commits to b l , b, . . . b,.

Commit stage -
-

1. Bob selects a random vector R = (~ ~ , r Z , . . . r 2 ~) where r; E (0 , l) for
1 5 i 5 2q and exactly q of the r,'s are 1 and sends it to Alice

2. Alice computes c = E(b1, b2,. . . bm). Alice select a seed 3 E (0,l)" and
sends to Bob e = c @ GR(s) (the bitwise Xor of GR(s) and c), and for each
1 5 i 5 2q such that r; = 0 she sends B;(s).

Reveal stage - Alice sends s and b l , b , ... b,. Bob verifies that for all 1 5
i 5 2q such that ri = 0 Alice had sent the correct B;(s) and computes c =

E(b1, bz , . . . b,) by computing GR(s) and verifies that e = c @ GR(s)

134

As in the previous section, Bob can learn nothing about any of the bi’s. When
can Alice cheat? She can cheat if there exists a pair of seeds s1 and s2 that agree on
all the indices that d has a 0, and there exist two different sequences bl, bz, . . . bm and
b i , b i , . . . bk such that Gg(sl) @ E (b l , &, . . . b,) = GA(s2) @ E (b i , bi,. . .blm). We will
say that s1 and sz fool d in this case.

Claim 4.1 For any pair of seeds s1 and s2, the Probability that it fools 8 is at mos t
(1 - t)q, where the probability is taken over the choices of 3.

Proof: If s1 and 5 2 can fool any 2, then the hamming distance between GZq(s1) and
Gzq(sz) must be at least q, since G R (s l) $ e = c1 and GR(s2)$e = c2 for two different
code words c1 and c2 whose distance is at least q. Therefore, the probability that the
indices i for which r; = 0 will hit only the indices where Gzq(s1) and Gzq(sz) agree is
at most (y) q = (1 - :) q . ~

If log & - q > 3n, then for at most 2-“ of the vectors 2 E (0,l)’q there is a pair
of seeds s1 and 52 that fool d. Therefore, Alice’s chances of being able to alter any
bit are at most 2-”.

The number of bits exchanged in the protocol is O(q), and when amortized over
m bits it is O (q / n) which is 0(1), since C is a good code. The dominant factor in the
computational complexity of the protocol is that of G. Alice has to produce a pseudo-
random sequence of length 2q which is O(n). This is similar to the requirement in
the one bit commitment.

We can summarize by

Theorem 4.1 If G i s a pseudo-random generator, then the many bit commitment
protocol presented obeys the following: For all polynomials p and for large enough
security parameter n

I.

2.

0

After the commit stage Bob cannot guess any b; with probability greater than
f+’ even when told h, &, . . . , b;-l, bi+l,. . . b,

For all 1 5 i 5 m, Alice can reveal only one possible value for bi, ezcept with
probability less t han 1

P(”)

p(n) ’

Kilian has suggested a different method for amortizing the communication com-
plexity: commit to a seed s by committing to each of its bits separately and then
commit to bl, b.. .b, by providing its Xor with the pseuderandom sequence gener-
ated by s. However, in this method the amortization starts only when rn is at least
n‘

135

5 Conclusions

We have shown how to construct bit commitment protocols from pseudo-random
generators and have shown how bit commitment to many bits can be implemented
very efficiently. Thus, various Zero-Knowledge protocols can be implemented with
low complexity.

In both protocols we have presented, Bob selects a random 3, and we have argued
that almost all the 3 ’ s are good. Therefore if there is a trusted party at some point
in time (say the protocol designer), it can choose i and the same 3 will be used in
all executions of the protocol.

References

M. Blum, Coin Flipping by Telephone, Proc. 24th IEEE Compcon, 1982,
pp. 133-137.

M. Blum, S. Micali How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits, Siam J . on Computing, vol 13, 1984, pp 850-864.

G. Brassard, D. Chaum, C. Crhpeau, Minimum DiscZosure Proofs of Knowl-
edge, Journal of Computer and System Sciences 37 (1988), pp. 156-189.

D. Chaum, I. DamgArd and J. van de Graaf, Multiparty Computations En-
suring Secrecy of each Party’s Input and Correctness of the Output, Proc.
of Crypto 87.

A. Fiat and A. Shamir, How to prove yourself, Proc. of Crypto 86, pp.
641-654.

0. Goldreich, S. Goldwasser and M. M i d , How to construct random func-
tions, Journal of the ACM, vol33, 1986, pp. 792-807.

[GMWl] 0. Goldreich, M. Micali, A. Wigderson, Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design, Proc. 27th Sym-
posium on Foundations of Computer Science, 1986, pp 174-187.

[GMW2] 0. Goldreich, M. M i d , A. Wigderson, How to play any mental game, Proc.
19th Symposium on Theory of Computing, 1987, pp. 218-229.

[IL] I. Impagliazm and M. Luby, One-way functions are essential to computa-
tional based cryptography, Proc. 21st Symposium on Theory of Computing,
1989.

136

[ILL] I. Impagliazzo, L. Levin m d M. Luby, Pseudo-random generation fiom one-
way functions, Proc. 21st Symposium on Theory of Computing, 1989.

[IY] R. Impagliazzo and M. Yung, Direct Zero-Knowledge Protocols, Crypto 87.

[Ju] J. Justesen, A class of constructive asymptotically good algebraic codes,
IEEE trans. on Information theory 18 (1972) 652-656.

[KMO] J. Kilian, S. M i d and R. Ostrovsky, Simple non-interactive eero-knowledge
proofs, Crypto 89.

[Yao] A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. 23rd Sym-
posium on Foundations of Computer Science, 1982, pp 80-91.

	Bit Commitment Using Pseudo-Randomness*
	Introduction
	Definitions
	The Bit Commitment
	Efficient Commit to Many Bits
	Conclusions
	References

