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Abstract. In this paper we show how to predict a large class of pseudorandom number 
generators. We consider congruential generators which output a sequence of integers 

k 

SO.Sl,... where si is computed by the recurrence si r I: ai @j(so,sl,...Si_l) (mod ml for 
j=l 

integers m and Ctj , and integer functions @j , j=l,...,k. Our predictors are @cient, 
provided that the jimctions Oj are computable (over the integers) in polynomial time. 

These predictors have access to the elements of the sequence prior to the element being 

predicted, but they do not know the modulus m or the coeflzcients aj the generator actu- 

ally works with. This extends previous results about the predictability of such genera- 

tors. In particular, we prove that multivariate polynomial generators, i.e. generators 
where Si ~Pp(Si,,.. . , si_,> (mod m ). for a polynomial P of fixed degree in n variables, 

are eficiently predictable. 

1. INTRODUCTION 

A number generator is a deterministic algorithm that given a sequence of initial 

values, outputs an (infinite) sequence of numbers. Some generators, called pseudoran- 

dom number generators are intended to output sequences of numbers having some pro- 

perties encountered in truly random sequences. Such generators appear in diverse appli- 

cations as Probabilistic Algorithms, Monte Carlo Simulations, Cryptography, etc. For 

cryptographic applications a crucial property for the sequences generated is their unpred- 
ictability. That is, the next element generated should not be efficiently predictable, even 

given the entire past sequence. Efficiency is measured both by the number of prediction 

mistakes and the time taken to compute each prediction. (A formal definition of an 

efficient predictor is given in section 2). 
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A pseudorandom number generator that has received much attention is the so called 
linear congruential generator, an algorithm that on input integers a ,  b , m ,  so outputs a 
sequence sl ,s2, .  - . where 

si = a si- ,+b (mod m )  . 

Knuth [13] extensively studied some statistical properties of these generators. 

Boyar [16] proved that linear congruential generators are efficiently predictable 
even when the coefficients and the modulus are unknown to the predictor. Later, Boyar 
[3] extended her method, proving the predictability of a large family of generators. She 
considered general congruential generators where the element si is computed as 

for integers m and aj , and computable integer functions CJ, , j=1 ,..., k. She showed that 
these sequences can be predicted, for some class of functions @,, by a predictor knowing 
these functions and able to compute them, but not given the coefficients a, or the 
modulus m . Boyar's method requires that the functions @, have the unique arrapolation 
property. The functions . . .  ,ak have the unique extrapolation property with 
length r, if for every pair of generators working with the above set of functions, the same 
modulus m and the same initial values, if both generators coincide in the first r values 
generated, then they output the same infinite sequence. Note that these generators need 
not be identical (i.e. they may have different coefficients). 

The number of mistakes made by Boyar's predictors depends on the extrapolation 
length. Therefore, her method yields efficient predictors provided that the functions a, 
have a small extrapolation length. The linear congruential generator is an example of a 
generator having the extrapolation property (with length 2). Boyar proved this property 
also for two extensions of the linear congruential generator. Namely, the generators in 
which the element si satisfies the recurrence 

and those for which 

The first case with length k + 1, the second with length 3, She also conjectured the pred- 
ictability of generators having a polynomial recurrence: 

si I p (mud m )  
for an unknown polynomial p of fixed (and known) degree. 

polynomial recurrence, that is a generator outputting a sequence so, s ,,... where 
si = P (s i -" ,  . . . ,si-,) (mod rn) 

for a polynomial P in n variables. Note that for polynomials P of futed degree and k e d  
n ,  the recurrence is a special case of the general congruential generators. Lagarias and 
Reeds [15] showed that multivariate polynomial recurrences have the unique 

s; = cf.1 si-k + . . . +ak si-1 (mad rn) 

si = al ~ ; 2 _ ~  + a2 a3 (mod rn 1 

A natural generalization of the above examples is a generator having a multivm'are 
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extrapolation property. Furthermore, for the case of a one-variable polynomial of degree 
d ,  they proved this property with length d + 1, thus settling Boyar's conjecture concern- 
ing the efficient predictability of such generators. However, for the general case they did 
not give a bound on the length for which these recurrences are extraplatable (neither a 
way to compute this length). Thus, unfortunately, Boyar's method does not seem to yield 
an efficient predicting algorithm for general multivariate polynomial recurrences (since it 
is not guaranteed to make a small number of mistakes but only afinife number of them, 
depending on the length of the extrapolation). 

In this paper we show how to predict any general congruential generator, i.e. my  
generator of the form (1). The only restriction on the functions Qj is that they are com- 
putable in polynomial time when working over the integers. This condition is necessary 
to guarantee the efficiency of our method. (The same is required in Boyar's method). 
Thus, we remove the necessity of the unique extrapolation property, and extend the pred- 
ictability results to a very large class of generators. In particular, we show that multivari- 
ate polynomial recurrence generators are efficiently predictable. 

Our predicting technique is based on ideas from Boyar's method, but our approach 
to the prediction problem is somewhat different. Boyar's method mes to simulate the 
generator by "discovering" its secrets: the modulus m and the coefficients a, that the 
generator works with. Instead, our algorithm uses only the knowledge that these'coeffi- 
cients exist, but does not try to find them. Some algebraic techniques i n d u c e d  by 
Boyar when computing over the integers, are extended by us to work also when comput- 
ing over the ring of integers modulo m . 

2. DEFINITIONS AND NOTATION 
Definition: A number generator is an algorithm that given no integer numbers, called the 
initial values and denoted s - , ~ ,  . . . ,s-,, outputs an infinite sequence of integers so.sI, ... 
where each element s, is computed deterministicly from the previous elements, including 
the initial values, 

For example, a generator of the form si E a, s ~ - ~  + . . +ak s,-~ (mod m) requires a 
set of k initial values to begin computing the frst elements so. sl. . . . of the sequence. 
Thus, for this example n o = k .  

Definition: A (general) congruenn'al generafur is a number generator for which the i-th 
element of the sequence is a { O  ,...m- 1)-valued number computed by the congruence 

k 
s, = I: a 0 (S - , , ," . .S -1 ,So;" ,S , - , ) (modm)  

,=I J J 

where a, and m are arbitrary integers and QJ, 1 I j  Sk , is a computable integer function. 
For a given set of k functions Q = { Ql,Q2, . . . , Qk J a congruential generator working with 
these functions (and arbitrary coefficients and modulus) will be called a @-generator. 
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Example: Consider a generator which outputs a sequence defined by a multivariate poly- 
nomial recurrence, i.e. si = P(s i , ,  . . .  mod m), where P is a polynomial in n vari- 
ables and fured degree d .  Such a generator is a @-generator in which each function #, 
represents a monomial in P and uj are the corresponding coefficients. In this case we 

have k = ( ), and the functions (monomials) Oj are applied to the last n elements in 
the sequence, 

Note that in the above general definition, the functions #j work on sequences of 
elements, so the number of arguments for these functions may be variable. Some matrix 
notation will be more convenient. 
Notation: s ( i )  will denote the vector of elements (including the initial values) until the 
element si , i.e. 

n+d 

s(i) = (s,,, . . . , S _ l , S @ .  ' ' .Si) i=- l ,O,  1,2 

Thus, O,(S+,~, . . . , S - ~ . S ~ .  . . si-l) will be written as Q j ( s ( i - l ) ) .  

Let a denote the vector (a,, q, . . . ,ak) and B i t  i 20, denote the column vector 

Then we can rewrite the @generator's recurrence as 

si 5 a.Bi (mod m) 

Here, and in the sequel, * denotes mamx multiplication. 
Finally, B (i) will denote the matrix 

For complexity considerations we refer to the size of the prediction problem as 
given by the size of the modulus m and the number k of coefficients the generator actu- 
ally works with. (Note that the coefficients as well as the elements output by the genera- 
tor have size at most log m). We consider as eflcient generators for which the functions 
aj , I  l j  Sk, are computable in time polynomial in log rn and k. Also the efficiency of a 
predictor will be measured in terms of these parameters, which can be seen as measuring 
the amount of information hidden from the predictor. 

We shall be concerned with the complexity of the functions Qj when acting on the 
vectors s ( i ) ,  but computed over the integers (and not reduced modulo m).  This wil l  be 
referred to as the non-reduced complexity of the functions 0,. The performance of OUT 

predicting algorithm will depend on this complexity. 
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Definition: @-generators having non-reduced time-complexity polynomial in log m and 
k are called non-reduced polynomial-time @-generators. 

Next we define the basic concept, throughout this paper, of a predictor: 
Definition: A predictor for a Q-generator is an algorithm that interacts with the CP 
generator in the following way. The predictor gets as input the initial values that the gen- 
erator is working with. For i =0,1,2, ... the predictor outputs its prediction for the element 
si and the generator responds with the true value of si . 
An efficientpredictor (for a *generator) is a predictor for which there exist polynomials 
P and Q such that 

1) the computation time for every prediction is bounded by P ( k, log m )  

2) the number of prediction mistakes is bounded by Q ( k, log rn) 

Observe that when computing its prediction for si the predictor has seen the entire seg- 
ment of the sequence before si, and the initial values. The only secret information kept 
by the generator is the coefficients and the modulus. If the generator is not given the hi- 
tial values then our method cannot be applied to arbinmy @generators. However, in typ- 
ical cases (including the multivariate polynomial recurrence) generators have recurrences 
depending only on the last no elements, for some constant no. In this case the predictor 
may consider the first no elements generated as initial values, and begin predicting a f t a  
the generator outputs them. 

3. THE PREDICTING ALGORITHM 
The predictor mes to infer the element si from knowledge of all the previous ele- 

ments of the sequence, including the initial values. It does not know the modulus m the 
generator is working with, so it uses different estimates for this rn. Its first estimate is 
ni = 00, i.e. the predictor begins by computing over the integers. After some pomon of the 
sequence is revealed, and taking advantage of possible prediction mistakes, a new (finite) 
estimate n l o  for m is computed. Later on, new values for ni are computed in such a way 
that each ni is a (non-trivial) divisor of the former estimate, and all are multiples of the 
actual rn. Eventually ni may reach the true value of m . (For degenerate cases, like a 
generator producing a constant sequence, i t  may happen that m will never be reached 
but this will not effect the prediction capabilities of the algorithm). 

We shall divide the predicting algorithm into two stages . The first stage is when 
working over the integers, i.e. ni ==. The second one is after the frst finite estimate n ? ~  
was computed. The distinction between these two stages is not essential, but some techn- 
ical reasons make i t  convenient. In fact, the algorithm is very similar for both stages. 
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The idea behind the algorithm is to find linear dependencies among the columns of 
the mamx B ( i )  and to use these dependencies in making the prediction of the next ele- 
ment si. More specificly, we try to find a representation of Bi as a linear combination 
(modulo the current n?) of the previous B j ’ s  (that are known to the predictor at this 
time). If such a combination exists, we apply it to the previous elements in the sequence 
(i.e. previous s,’s) to obtain our prediction for si. If not conect, we made a mistake but 
gain information that allows us to refine the modulus n? . A combination as above will 
not exist if Bi is independent of the previous columns, We show that under a suitable 
definition of independence, the number of possible independent Bi ‘s cannot be too large. 
Therefore only a smZZ number of mistakes is possible, allowing us to prove the effi- 
ciency of the predictor. 

The number of mistakes made by the predictor, until it is able to refine the current 
m , will be bounded by a polynomial in the size of this nZ . Also the total number of dis- 
tinct moduli n? computed during the algorithm is bounded by the size of the first (finite) 
do. Thus, the total number of possible mistakes is polynomial in this size, which in tun 

is determined by the length of the output of the non-reduced functions a,. This is the 
reason for which the non-reduced complexity of these functions is required to be polyno- 
mial in the size of the true m and k . In this case the totaI number of mistakes made by 
the predictor will also be polynomial in these parameters. The same is true for the com- 
putation time of every prediction. 

The algorithm presented here is closely related to Boyar’s [3].  Our first stage is 
exactly the same as the first stage there. That is, the two algorithms begin by computing a 
multiple of the modulus m . Once this is accomplished, Boyar’s strategy is to find a set of 
coefficients {a/)!ml and a sequence of moduli n? which are refined during the algorithm 
until no more mistakes are made. For proving the correctness and efficiency of her pred- 
ictor, it is required that the generator satisfies the unique exrrapolation property (men- 
tioned in the Introduction). In our work, we do not try to find the coefficients. Instead, we 
extend the ideas of the first stage, and apply them also in the second stage. In this way 
the need for an extrapoiation property is avoided, allowing the extensions of the predicta- 
bility results. 

3.1 First Stage 

Let US describe how the predictor computes its prediction for si. At this point the 
predictor knows the whole sequence before si , i.e. ~ ( i - l ) ,  and so far it has failed to 
compute a finite multiple of the modulus m, so it is still working over the integers. In 
fact, the predictor is able at this point to compute all the vecton Bo, B ,, . . . Ji , since they 
depend only on ~ ( i - 1 ) .  Moreover, our predicror keeps at this point, a submatrix of 
B (i-1) , denoted by B ( i -1 )  , of linearly independent (over the rationals) columns. (For 
every i , when predicting the element si , the predictor checks if the column Bi is 
independent of the previous ones. If this is the case then Bi  is added to B ( i - 1 )  to form 



144 

B O ) .  Finally, let us denote by s ( i - 1 )  the corresponding subvector of s(i-1). having 
the entries indexed with the same indices appearing in B (i-1) . 

Prediction of si in the first stage: 

rationals, the system of equations 
The predictor begins by computing the (column) vector Bi. Then, it solves, over the 

B(i-l) .x = Bi 

If no solution exists, Bi is independent of the columns in B (i-1) so it sets 

B(i)= [Bi-1,  Bi] 

and it fails to predict si . 
If a solution exists, let c denote the solution (vector) computed by the predictor. The 
prediction for si , denoted fi, will be 

fi =s(i-l).c 

The predictor, once having received the true value for si , checks whether this prediction 
is correct or not (observe that the prediction 4 as computed above may not even be an 
integer). If correct, it has succeeded and goes on predicting s ~ + ~ .  If not, i.e. $#sit the 
predictor has made a mistake, but now it is able to compute nlo#-, the first multiple of 
the modulus m , as follows. Let 1 be the number of columns in matrix B(i-1) and let the 
solution c be 

Now, let d denote the least common multiple of the dominators in these fractions, i.e. 
d =lcm ( d l ,  . . . , d l ) .  The value of do is computed as follows 

nio=l dfi-Uki I . 

Observe that “io is an integer, even if fi is not. Moreover this integer is a multiple of the 
true modulus m the generator is working with (see Lemma 1 below). 

Once do is computed, the predictor can begin working modulo this nl0. So the fmt 
stage of the algorithm is terminated and it goes on into the second one. 

The main facts concerning the performance of the predicting algorithm during the 
f i t  stage are summarized in the next Lemma. 
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Lemma 1: 

a) 

b) 
c) 

d) 

The number n l o  computed at the end of the first stage is a nonzero multiple of the 
modulus m . 
The number of mistakes made by the predictor in the first stage is at most k+l  . 
For non-reduced polynomial time @-generators, the prediction time for each si dur- 
ing the first stage is polynomial in log m and k . 
For non-reduced polynomial time *generators, the size of nlo is polynomial in log 
m and k . More precisely, let M be an upper bound on the output of each of the 
functions Qj . j = 1 ,..., k , working on (0 ,... m -1 }-valued integers. Then, 
& I ( k + 1 ) k k R m M k .  

Proof: 
a) From the definition of the generator we have the congruence sj E aB, (mod m )  for all 
j20, therefore 

s (i-1) E a B  (i-1) (mod m )  (3) 
Thus, 

ds; =d s ( i - l ) - c  (by definition of fi) 

= d a . B ( i - 1 j . c  (mod m )  (3)) 

= d a - B i  (c isasolutionto B ( i - l ) . x  =Bi) 

= d si (mod m )  

So we have shown that dF; f dri (mod m ) .  Observe that it cannot be the case that 
ds;. =&, because this implies 4 =si , contradicting the incorrectness of the prediction. 
Thus, we have proved that do= I cis; -ds; I is indeed a nonzero multiple of m . 
b) The possible mistakes in the frst  stage are when a rational solution to the system of 
equations B (i-1)  - x  = Bi does not exist, or when such a solution exists but our prediction 
is incorrect. The last case will happen only once because after that occurs the predictor 
goes into the second stage. The frst  case cannot occur "too much", Observe that the 
mamces B (j) have k rows, thus the maximal number of independent columns (over the 
rationals) is at most k . So the maximal number of mistakes made by the predictor in the 
fmt stage is k+l  . 
c) The computation time for the prediction of si is essentially given by the time spent 
computing Bi and solving the above equations. The functions a, are computable in time 
polynomial in log m and k ,  so the computation of the vector Bi is also polynomial in 
log m and k. The complexity of solving the system of equations, over the rationals, is 
polynomial in k and in the size of the entries of B(i-1)  and Bi (see [S], [18, Ch.31). 
These entries are determined by the output of the (non-reduced) functions Q j ,  and there- 
fore their size is bounded by a polynomial in log m and k. Thus, the total complexity of 

(By definition of si (2)) 
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the prediction step is polynomial in log m and k , as required. 

d) As pointed out in the proof of claim c), a solution to the system of equations in the 
algorithm, can be found in time bounded polynomially in log m and k .  In particular this 
guarantees that the size of the solution will be polynomial in log m and k. (By size we 
mean the size of the denominators and numerators in the enmes of the solution vector.) 
Clearly, by the definition of do, the polynomiality of the size of the solution c implies 
that the size of nio is itself polynomial in log m and k .  

The explicit bound on nto can be derived as follows. Using Cramer's rule we get that the 
solution c to the system B ( i - l ) * x  = B i ,  can be represented as c = ( c l / d , .  . . , q / d )  where 
each cj and d are determinants of f by I submatrices in the above system of equations. 
Let D be the maximal possible value of a determinant of such a matrix. We have that 
d & = d s ( i - l ) c S l m D  (here m is a bound on s(i-1) enmes) and d s i S m D ,  then 
"ZO = I ai -dri I S ( I  + 1)m D .  In order to bound D we use Haddamard's inequality 

which states that each n by n matrix A =(a i j )  satisfies & r ( A ) S  p (,Z &la. In our case 

the matrices are of order I by 1 ,  and the ennies to the system are bounded by M (the 

n a  

l= l  1'1 

1 1  

i=l j - 1  
bound on Oj output). Thus, D I XI ( CM2)*"=(I M2)'", and we get 

(f + l ) m  D S ( I  + l ) m  ( I  M2)'n S (k  + l ) k k n m  M' 

The last inequality follows since I s k . 0 

3.2 Second Stage 

After having computed nio, the first multiple of m , we proceed to predict the next 
elements of the sequence, but now working modulo a finite nl . The prediction step is 
very similar to the one described for the first stage. The differences are those that arise 
from the fact that the computations are modulo an integer. In particular the equations to 
be solved will not be over a field (in the first stage it was over the rationals), but rather 
over the ring of residues modulo ni . Let us denote the ring of residues modulo n by Z,, . 
In the following definition we extend the concept of linear dependence to these rings. 

Definition: Let v 1,v2, . . . , vl be a sequence of 1 vectors with k entries from Z,, . We say 
that this sequence is weakly linearly dependent mod n if v 1 = 0  or there exists an index 
i , 2 1 i  51, and elements C l . C 2 , .  . . .Ci-l E Z",  such that 
v; = C I V ~ + C Z V ~ + .  - . +ci-lvi-l (mod n ) .  Otherwise, we say that the sequence is weakly 
linearly independent. 

Note that the order here is important. Unlike the case in the uaditional definition 
over a field, in the a h v e  definition it is not equivalent to say that some vector in the set 
can be written as a linear combination of the others. Another important difference is that 
it is not true in general, that k+l vectors of k components over Z, must contain a 
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dependent vector. Fortunately, a slightly weaker statement does hold. 

Theorem 2: Let v l , v 2 , .  . . ,vl be a sequence of k-dimensional vectors over Z,. If the 
sequence is weakly linearly independent mod n , then I S k log, n , where q is the smal- 
lest prime dividing n . 
Proof: Let v l . v 2 , .  . . ,vI be a sequence of 1 vectors from Z,", and suppose this sequence 
is weakly linearly independent mod n . Consider the set 

I 

1 4  
V = { ,Z ~ i ~ i  (mod n) ci E {O,l, * * ,q-l}} 

We shall show that this set contains q1 different vectors. Equivalently, we show that no 
two (different) combinations in V yield the same vector. 

Claim: For every cj  ,c/ E (0.1, . - .q -1 ) , 1 s i 5 I ,  if ,Z ci vi = .Z c;vi (mod m )  then ci = c! 

for i = 1 2 , .  . . , l .  

Suppose this is not me. Then we have .Z (ci-cf) vi i 0 (mod n ) .  Denote ci-c/  by di. Let 

t be the maximal index for which d, # 0. This number d, satisfies -q cd, q , so it has an 
inverse modulo n (recall that q is the least prime divisor of n ) ,  denoted d;'. It follows 

that v, = X-dd,-'d;v;(mod n )  contradicting the independence of v t ,  and thus proving the 

claim. 

I I 

I =1 I=I  

1 

r=l 

1-1  

i=l 

Hence, I V I =q' and therefore 

q ' = I V I m , " l = n ~  

which implies 1 I k log, n , proving the Theorem, 

With the above defmition of independence in mind, we can define the matrix B(i) 
as a submatrix of B (i) , in which the (sequence of) columns are weakly linearly indepen- 
dent mod n? . Note that ni will have distinct values during the algorithm, so when writing 
B(i) we shall refer to its value modulo the current n? . 

Prediction of si in the second stage: 

need is to point out the differences with the process described for the first stage. 

solving the system of equations 

Let us describe the prediction step for si when working modulo n? . In fact, all we 

As before, we begin by computing the vector Bi (now reduced modulo rfi 1, and 

B ( i - l ) - x  3 Bi (mod ni)  

We stress that this time we are looking for a solution over Z, . In case a solution does not 
exist, we fail to predict, exactly as in the previous case. As before, the vector B i ( d  r f i )  
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is added to B ( i -1)  to form the matrix B(i. If a solution does exist, we output OUT predic- 
tion, computed as before, but the result is reduced mod A .  Namely, we set 
$ =s ( i - 1 ) ~ ~  (mod nl), where c is a solution to the above system of modular equations. 
If the prediction is correct, we proceed to predict the next element s ~ + ~ .  If not, we take 
advantage of this error to update nl . This is done by computing 

This m' will be the new n? we shall work with in the coming predictions. 

To see that the prediction algorithm as described here, is indeed an @cifntpredic- 
tor, we have to prove the following facts summarized in Lemma 3. (Lemma 3 is analo- 
gous to Lemma 1 for the second stage). 

Lemma 3: The following claims hold for a predictor predicting a non-reduced polyno- 
mial time 0-generator. 

a) The number ni computed above is a nontrivial divisor of n? and a multiple of the 
modulus m . 

b) Let A. be the modulus computed at the end of the fist  stage. The total number of 
mistakes made by the predictor during the second stage is bounded by (k + 1) log Ao, 
and then polynomial in log m and k. 
The prediction time for each si during the second stage is polynomial in log m and 
k. 

d=gcd(n?,$-si )  

c) 

Proof: 
a) Recall that d = g c d  (A ,$-si), so it is a divisor of 18. It is a nontrivial divisor because 4 
and si are reduced mod nl and m respectively, and then their difference is strictly less 
than nl . It cannot be zero because fi + s i ,  as follows from the incorrecmess of the predic- 
tion. The proof that m' is a multiple of m is similar to that of claim a) of Lemma 1. It is 
sufficient to show that $ -s; is a multiple of m ,  since n? is itself a multiple of m .  We 
show this by proving $ E si (mod m )  : 

$ S ( i - l ) . C  (mod n ? )  (by definition of S;) 
3 a - B ( i - l ) . c  (mod m )  (by(3)) 

= a. Bi (mod n?)  

= s; (mod m )  

(c is a solution to B ( i - 1 ) ~ ~  i Bi (mod nl)) 

(By definition of s; (2)) 

As rn divides r.4 , claim a) follows. 

b) The possible mistakes during the second stage are of two types. Mistakes of the first 
type happen when a solution to the above congruential equations does not exist. This 
implies the independence modulo the current n? of the corresponding B i .  In fact. this Bi is 
also independent mod &,. This follows from the property that every A is a divisor of 
By Theorem 2, we have that the number of weakly linearly independent vectors mod A0 
is at most k log do. Therefore the number of mistakes by lack of a solution is bounded by 
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this quantity too. The second type of mistake is when a solution exists but the computed 
prediction is incorrect. Such a mistake can occur only once per n? . After it occurs, a new 
n? is computed. Thus, the total number of such mistakes is as the number of different n? 's 
computed during the algorithm. These n i ' s  form a decreasing sequence of positive 
integers in which every element is a divisor of the previous one. The first (i.e. largest) 
element is do and then the length of this sequence is at most logriis Consequently, the 
total number of mistakes during the second stage is at most (k  + 1) log do, and by Lemma 
1 claim d) this number is polynomial in log m and k . 
c) By our assumption of the polynomiality of the functions Oj when working on the vec- 
tors s(i), it is clear that the computation of each Bi (mod ni), takes time that is polynomial 
in log rn and k. We only need to show that a solution to B(i-l)-x I Bi (mod n?) can be 
computed in time polynomial in log m and k . A simple method for the solution of a sys- 
tem of linear congruences like the above, is described in [6] (and [3]). This method is 
based on the computation of the Smith Normal Form of the coefficients ma& in the sys- 
tem. This special matrix and the related transformation matrices, can be computed in 
polynomial time, using an algorithm of [12]. Thus, finding a solution to the above sys- 
tem (or deciding that none exists) can be accomplished in time polynomial in log rn and 
k . Therefore the whole prediction step is polynomial in these parameters. 0 

Combining Lemmas 1 and 3 we get 

Theorem 4: For every non-reduced polynomial-time @generator the predicring algo- 
rithm described above is an efficient predictor. The number of prediction mistakes is at 
nwst (k + 1) (log do + 1) = 0 ( k210g (k m M )  ), where nlo is the first finite modulus com- 
puted by the algorithm, and M is an upper bound on the output of each of the functiom 
Oj , j = 1 ,..., k , working over integers in the set { 0 .... ,m -1 } . 

As a special case we get 

Corollary: Every multivariate polynomial recurrence generator is eficiently predict- 
able. The number of prediction mistakes for a polynomial recurrence in n variables and 

degree d is bounded by 0 ( k210g(k m d )  ), where k =( "id ). 

Proof A multivariate polynomial recurrence is a special case of a @-generator with 
M < m d ,  as each monomial is of degree at most d and it is computed on integers less than 
m .  Therefore, by Lemma 1 d) we get c ( k  + 1) kkRrn&+'. The number k of coeffi- 
cients is as the number of possible monomials in such a polynomial recurrence which is 
( "id). The bound on the number of mistakes follows by substituting these parameters in 
the general bound of Theorem 4. 0 
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Remark: Notice that the number k of coefficients equals the number of possible mono- 
mials in the polynomial. For general polynomials in n variables and of degree d ,  this 

number is ( ). Nevertheless, if we consider special recurrences in which not every 
monomial is possible, e.g. si E al s?,, + . . . +a,, s:, (mod m), then the number k may be 
much smaller, and then a better bound on the number of mistakes for such cases is 
derived. 

n+d 

4. VECTOR-VALUED RECURRENCES 
The most interesting subclass of @-generators is the class of multivariate polyno- 

mid recurrence generators mentioned in previous sections. Lagarias and Reeds [151 stu- 
died a more general case of polynomial recurrences in which a sequence of n -  
dimensional vectors over Z,,, is generated, rather than a sequence of Z,,, elements as in OUT 

case. These vector-valued polynomial recurrences have the form 
- - 

S; = (PlcS;..-l,l.. . . ,si+,)(mod m ) ,  . . . , P,,(i&,. . .   mod m ) )  

where each P, , 1 5 1 5 n , is a polynomial in n variables and of maximal degree d .  Clearly, 
these recurrences extend the single-valued case, since for any multivariate polynomial P 
which generates a sequence ( si ) Td of Z, elements, one can consider the sequence of vec- 
tors$ = ( S ~ . S ~ - ~ ,  . . . .si-,,+J where 

The vector-valued polynomial recurrences can be generalized in terms of * 
generators as follows. Consider n congruential generators dl), . . . ,a("), where 
@('I= ( @ ~ ) ) ~ * l ,  and for each j , I  ,@I") is a function in n variables. For any set 
{a,?) : 1 5 j  Ik ,151 Sn } of coefficients and modulus m ,  we define a vector-valued gen- 
erator which outputs a sequence of vectors To ,TI ,..., where each s; = G,l , .  . . ,%+) E ZL is 
generated by the recurrence 

S; = ( ~a,U,?)(<-l,l,. . . .si+)(md m), . . . , ~ a f  0, G-,,~. . . . .si-l,,)(mod m > )  (4) 

It is easy to see that vector-valued recurrences of the form (4) can be predicted in a 
similar way to the single-valued recurrences studied in the previous section. One can 
apply the prediction method of Section 3 to each of the "sub-generators" O/),l= l,.,.,n. 
Notice that < is computed by applying the functions Of) to the vector s;-l, and that this 
S;-l is known to the predictor at the time of computing its prediction for S; . Thus, each of 
the sequences { s i , ) L , f  = I ,  ..., n are efficiently predictable and so is the whole vector 
sequence. The number of possible prediction errors is as the sum of possible errors in 
each of the sub-generators @('I. That is, at most n times the bound of Theorem 4. 

One can take advantage of the fact that the different sub-generators work with the 
same modulus m in order to accelerate the convergence to the true value of m .  At the 
end of each prediction step, we have n (not necessarily different) estimates d") , . . . , d'") 

=(P(s i -* ,  . . . , s i , > ( d  m ) s i + .  . . ,si,+& 

- k 
8 )  ( 8 )  

- k 

j=l j-1 
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computed by the predictors for @ ( I ) ,  . . . , @(''I, respectively. In the next prediction we put 
all the predictors to work with the same estimate nl computed as nl = gcd(nl(') ,  . . . , nl("? 
. This works since each of the 171") is guaranteed to be a multiple of rn (claim (a) in Lem- 
mas 1 and 3). In this way we get that the total number of mistakes is bounded by 
(nk+l)(log&-+l). Notice that the dimension of the whole system of equations 
corresponding to the n @(')-generators is nk (as is the total number of coefficients hidden 
from the predictor). On the other hand, the bound on nlo from Lemma 1 is still valid. It 
does not depend on the number of sub-generators since we predict each @)-generator 
(i.e. solve the corresponding system of equations) separately. Thus, we can restate 
Theorem 4 for the vector-valued case. 
Theorem 5: Vector-valued recurrences of the form ( 4 )  are ficiently predictable pro- 
vided that each d')-generator, 1 = 1, ..., n , has polynomial-time non-reduced complexity. 
The number of mistakes made by the above predicting algorithm is 0 ( n k'log (k rn M )  ), 
where M is an upper bound on the output of each of the functions 
a!), j = 1 ,... ,k , I  = 1 ,..., n ,  working over integers in the set (0 ,... m-1). I n  particular, for  
vector-valued polynomial recurrences in n variables and degree at most d the number of 
mistakes is 0 ( n k210g (k  md) ), where k = ( "id ). 

Remark: For simplicity we have resmcted ourselves to the case (4) in which the sub- 
generators @(') work on the last vector &-,. Clearly, our results hold for the more general 
case in which each of these sub-generators may depend on the whole vector sequence 
s-ao 9 . . . , q - 1  output so far. In this case the number n of sub-generators does not depend 
on the number of arguments the sub-generators work on, and the number of arguments 
does not effect the number of mistakes. 

- - 

5. CONCLUDING REMARKS 
Our prediction results concern number generators outputting all the bits of the gen- 

erated numbers, and does not apply to generators that output only parts of the numbers 
generated. Recent works treat the problem of predicting linear congruentid generators 
which output only parts of the numbers generated [9, 14, 191. 

A theorem by Yao [21] states that pseudorandom (bit) generators are unpredictable 
by polynomial-time means if and only if they pass any polynomial time statistical test. 
That is, predictability is a universal statistical test in the sense that if a generator is 
unpredictable, then it will pass any statistical test. Thus, a generator passing this univer- 
sal test will be suitable for any "polynomially bounded" application. Nevertheless, for 
specific applications, some weaker generators may suffice. As an example, for their use 
in some simulation processes, all that is required from the generators is some dismbution 
properties of the numbers generated. In the field of Probabilistic Algorithms the correct- 
ness of the algorithm is often analyzed assuming the total randomness of the coin tosses 
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of the algorithm. However, in special cases a more relaxed assumption is possible. For 
example Bach [2] shows that simple linear congruential generators suffice for guarantee- 
ing the correctness and efficiency of some probabilistic algorithms, even though these 
generators are clearly predictable. In [7] linear congruential generators are used to 
"expand randomness". Their method allows the deterministic "expansion" of a truly ran- 
dom string into a sequence of pairwise independent pseudorandom strings. 

Provable unpredictable generators exist, assuming the existence of one-way func- 
from [4, 21, 10, 111. In particular, assuming the intractability of factoring, the following 
pseudorandom bit generator is unpredictable [5 ,  1, 201. This generator outputs a bit 
sequence b where bi is the least significant bit of sir si = sit1 (mud m ) ,  and m is the 
product of two large primes. 
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