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Abstract. In this paper, we &vc at jut a precise estimation for the consistency 
probabiL&y of a system of linear algebraic equutions Ax - b with random m xn 
coefficient mat& A, m > n, and fixed non-zero r&h side b. A new test in 
qptanalysis is then fmmUratcd on the basis of the tstimation and applied to at- 
tack the multipkxiqg Bencrator of Jennings (1980) and the mu&pie-Jpecd Ben- 
erator of Mksey-Rncppel (1984). Some security remark concerning the pe&ect 
linear cipher of the latter authors are also made. 

Linearity is the curse of the crypto- 
grapher 

- J. Massey - 

I. Introduction 

Cryptanalysis is in the last run a matter of searching [l]. In cracking a 
more or less seriously designed cryptosystem, exhaustive searching at some 
level is inevitable. The problem is in the range of which objectives to make 
the searching tests so as to minimize the amount of work needed, and accor- 
ding to which criteria to signalize discovery of the objectives in search so as 
to maximize the probability of successful key identication. 
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If the entire key of secrecy K in a system can be revealed by exhaustive 
searching concentrated on a certain subkey K1, then this will mean that only 
the I K1 I key bits in search are responsible for the cryptographic strength of 
the system, and the remaining I K I - (R1 I bits of key information are 

can be called the hey i n . m f i 0 n  redundant. The ratio p = 

redandalnlnlnlnlnlnln/n/n/n/n/n/n/n/n/n/n rate of the system. 
Systems which can be cracked by pure analytic attack, such as those dis- 

cussed in [2], have key information redundancy rate p - 1, but similar cases 
rarely happen in practice. 

The problem now is how to discover the redundancy. The rubric of J. 
Massey quoted above gives us an important hint that in certain cases such 
redundancy may be found by making use of the linearity latent in the sys- 
tems under consideration. 

Following this idea, we prove in the present paper a theorem on the con- 
sistency probability of a system of linear algebraic equations A x = b with 
random m x n  coefficient matrix A ,  m > n ,  and fixed non-zero right side 
vector b .  On the basis of this theorem, we set up a new cryptanalytic test, 
called the linear consistency test (LCT), and apply it to disclose the key in- 
formation redundancy in several random bit generators published in the open 
li terature, 

I K I - I K1 I 
IKI  

11. The Consistency Probability of A x = b 
We start with proving the following two simple algebraic propositions. 

Lemma 1. Let A - a ( i j )  be an m X n random binary matrix with 
entries satisfying, independently from each other, the distribution 

Then for any integer r ,  0 < r < n, the probability 1 Pro& a ( i j )  - 0 
for A to have rank Y is 

[ I  

prob [rank ( A )  - r = C; 2-m(,--1) ii u - p  1 i - m 7 + 1  

1 7 .  [ 
1 

(1) 

Proof. Consider the direct product G = GL(m, F , )  X S, of the m- 
dimensional general linear group GL (m, F 2 )  and the symmetric group S, of 
degree n, acting on the object set 0 = b} of all possible m X n matrices 
over F2, in such a way that for anyA E fi andB = (P,Q), P E GL(m,  Fz), 
Q E Sn , we have .rr,(A) -PAQ . It is well known [5],  that the subset of 
all m X n matrices of rank T form a G-orbit with representative 

Thus we see the number of all m x n matrices of rank r over F 2  is equal to 
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But we know 

so for the purpose of computing N,,,, we need only determine the order 
of the stabilizer of I,,, p J  in G . In doing this, we partition the square ma- 
trices P, Q-’ into block forms compatible with I M r J  

Moreover, we have Q(2,l) = 0, since Q-’ is a permutation matrix, and 
P(1,2) can be an arbitrary matrix. Therefore, we have 

and 
m 1 

But I SZ I = 2””, so we get (1). 

L e m m a  2. Let b be any given non-zero vector in the mdimensional 
vector space V,,,(Ft), and Y any non-negative integer not greater than m. If 
the r-dimcnsional subspaces of Vm(F2) can be generated equi- 
probabilistically, then the probability for a randomly generated r dimensional 
subspace W to contain b is 

2’ - 1 PYO&(b € w] - 2m - . 
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Proof. Every r-dimensional subspace of Vm(F2) containing b can be 
spanned by a basis of the form (b ,  wl, f p 2 ,  ..., fprql) . There are altogether 

similar vector sets in Vm(F2), and the vector set (b ,  ~ ' 1 ,  ~ ' 2 ,  ..., ~ ' ~ - 1 )  will 
span the same subspace as (&, f p  1, f p 2 ,  ..., w , - ~ )  iff 

where Q E GL (r-1, P 2 )  and c is an arbitrary (r - 1)-tuple. So we see the 
number of rdimensional subspace in V,,, ( F 2 ) ,  which contain &, is 

B r  

I -  N?$ - 
2'-'1 GL (r-1, F 2 )  

On the other hand, the number of arbitrary rdimensional subspaces of 
V, ( F 2 )  can be derived in the same way to be 

So we have 

Theorem 1. Let A and & be as described in the lemmas and m > n, 

1 1 
then the probability for the linear system A x - & to be consistent is 

(3) Pro& ( A  x = b is consist.) < -(1 + 2"+')= . 
2m -n 

Proof. Denote by L ( A )  the subspace of Vm(F2) spanned by the n 
column vectors of A ,  then the system is consistent iff & E L ( A ) .  Therefore 
we have 

Pro& ( A  x = & is consistent 
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1 2 ' - l  
r-0 i-m-r+l 2 2 m - 1  

2" r-0 i-m-7+1 

m - 5c;2-- n ( 1 - 7 ) .  

1 
2' 

m -1 1 "  = = - X C ; ~ - ( ~ - + )  rl[ ( i - - ) . ( 2 7 - i )  

1 "  

1 1 "  1 1 "  - -(2 + -) - -(1+ -) 
2m 2m 2" 2" 

1 1 "  <-  (1+Zm+') - 2m -?a 

III. The Linear Consistency Test (LCT) 
In considering a keystream generator, it is sometimes possible to single 

out a certain subkey K1 from the entire key of secrecy K and write out a 
system of linear equations of the form 

A(K1)x - b  9 (4) 

where the coefficient matrix A (K1) is determined by the bit-generating algor- 
ithm and is parametrized by Kl, while b is determined by the captured seg- 
ment of the output sequence. The solution vector x ,  in general, can be used 
to determine the remaining part of K. 

If the parameter K1 coincides with the subkey used in generating the 
captured segment under consideration, then (4) certainly will be consistent. 
O n  the other hand, if the parameter K1 is not the subkey used, then by 
theorem 1 the consistency probability of the system will be very small when 
the captured segment is long enough. 

Thus, for the purpose of finding the right subkey K1, we need only test 
the consistency of (4) with respect to all possible choices of the parameter 
R1, and signalize discovery of the subkey in search whenever the system is 
found to be consistent. The number of cases to be tested is 2IK1 I, and the 
work factor needed for each test is that of the Gauss elimination algorithm 
applied to the augmented matrix (A (K1), b ) .  
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In order to make the number of false consistency alarms as small as pos- 
sible, the number of equations in (4) should exceed I x  I + I K1 I 
significantly. This being the case, another consequence is that the solution x 
of a consistent system (4) will be, tpithpprottability nearly 1, unique. In cer- 
tain situations, for example, in the problems to be considered below, this 
means no further large scale searches will be needed for revealing the entire 
key. 

The followingpop mefady in stream cipher cryptography is in many cases 
helpful in forming up the linear system (4) needed in applying the LCT. 

Lemma 3. If the linear recursive sequence c = {c ( t )  I t 2 01 has a feed- 
back polynomial f ( x )  of degree t t ,  and 

m d  f ( X )  
n-1 X t  = f ( X )  - f ’ ,O + rt,1x + * - * + ft,”-1x 

then 

~ ( t )  r t , @ ( O )  + yt,lC(l) + . * + rtp-1C(f i - l ) .  ( 5 )  

Proof. Write x’ - q ( ~ ) f ( x )  + Y ( X )  , then we have 

d A (x’ + ~ ( x ) ) c  = (x’ + Y ( X ) ) C  + q ( x ) f ( x ) c  = (xt + q ( x ) f ( x )  + r ( 3 ~ ) ) c  = 0 ,  

and (5) follows from examining the expression for the signal d ( 0 )  . 

N, Cracking the Generators of Jennings and Massey-Rueppel 
The generators proposed by Jennings and Massey-Rueppel both use two 

LFSR sequences with primitive feedback polynomials f (x ) and 8 (x ), of de- 
grees I and n respectively, as source sequences, but combine them by 
different key-controued algorithms. The LCT will show that both of them 
suffer from a fairly large key information redundancy. 

(A) The Multiplexing Generator of Jennings 
According to Chambers [6], similar schemes have been recommended by 

the European Broadcasting Union as standards for scrambling television 
broadcasts. The generator produces the output signals c ( t ) ,  t 3 0, in the 
following way: Fix a positive integer h 6 min(I, Llog2nj) and a tap pattern 
o , < i , < i , <  . . ‘  < ih-l 6 1-1 on LFSR-1. For every moment t > 0 
form the number 

24 (t ) = a (t + i 0) + a (t + i 1)2 + - - + a (t + ib  4 ) 2 b  -1 

and transform it into 

8(u ( t ) )  I&) + I l ( t ) 2  + * * * + Ih-1(t)2h-1 , k = [ l o g ~ n ]  
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by an injective mapping 6: {O, 1, ..., 2b - 1) - [O, 1, ..., n - 1) , which to- 
gether with the initial states of LFSR-1 and LFSR-2 form the key of secrecy 
of the system. The output signal is t ( t )  - b [ t + 6(u ( t ) )  1 . 

Figure 1. The Jennings Generator 

It has been shown [3], that if (1, n) - 1, then the output sequence has 
period (2’ - 1)(2” - 1) and linear complexity LC Q n(1 + XC:) , with 

equality if the tap positions are spaced at  equal intervals. Thus, the strive for 
the highest linear complexity will greatly limit the choice of the tap patterns. 
Therefore, without losing any generality of our analysis, we can assume the 
tap pattern is fixed and known. 

Theorem 2. If the feedback polynomials f ( x )  and 8 ( x )  are known to 
the cryptanalyst, then the Jennings Henerator can be broken on an output 
segment of length N 3 I + n 2’ by 2 + 

Proof. The cracking procedure starts with applying the LCT to deter- 
mine the initial state ;Lo of LFSR-1 corresponding to the captured segment c 
of length N .  

Step 1. For each 0 6 t 4 N-1, divide x’ by ~ ( x )  to obtain the 
remainder 

b 

i -1 

linear consistency tests. 

n-1 r t ( x )  - Yt,o + Y,,lX + * - - + r*,n-lX 

and store the vector r(t) - ( I ~ , ~ ,  r,,,, ..., Y $ $ - ~ )  . 

initial state and form 2b linear systems 
Step 2. For every non-zero a E Vl(Ft),  set LFSR -1 to work with a as 

S k : A k X - C k ,  o < k < 2 b - 1 ,  (6)  

by putting the equation (r(t), x )  = c ( t )  into the system S k  whenever 
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u ( t )  -k. 
For 0 < h < 2b - 1, test the consistency of sk. Discard a whenever in- 

consistency is alarmed. The vectors a, for which all the systems sk turn to be 
consistent, will be reserved as candidates for ao. The true initial vector a~ 
will certainly be reserved and the probability p for an arbitrary a to be 
reserved can be estimated in the following way: Let mi be the number of 
equations in s k  and assume that mk > n for h < q and mk 4 n fork >/ q .  
By theorem 1, the probability for Sk to be consistent is 

so we see 
.-I 

Step 3. Let a be any candidate vector. Consider any system in (6),  for 
which the coefficient matrix Ak has the largest rank, and denote the set of the 
solutions as vectors in V,, (FZ) by V. According to lemma 1, we have 
I V I - 1 with probability nearly 1. Choose an arbitrary v o  E V and consider 
the vectors 

(7) ... P--n+l, ..+) 9-1, Po, 7 1 ,  "n-1 

which can be generated successively by LFSR-2 starting from P , + ~ .  Check 
whether there is in (7) a subset of 2' vectors 

9 .  '0' I .  '9-1 ' (8) 

satisfyrng the following two conditions: 

(a) ALP;,= = ck , 0 < k < 2' - 1 ; (b) max {ik) - rnintik) < n . (9) 

Discard PO if such a subset in (7) does not exist. Discard a if all vectors in V 
are discarded. 

Since the probability for an arbitrary set of 2b vectors in Vn(F2) to have 
the property that USR-2, starting from a certain one of them, will generate 
the remaining vectors within n - 1 steps is of the order of magnitude 

, all the candidate vectors a, except ao, will be discarded and 
be uniquely determined. 
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Step 4. Write u 2 m i n i k ,  s A m a x i k ,  P A : + + - - - ,  and 
suppose LFSR-2, starting from P,, arrives a t  the vector v6 of ( 8 )  in nk steps, 
conclude 

o ( k ) - n k + v ,  0 < k  < 2 ' - 1 ,  

where v may be any non-negative integer not exceeding p ,  and the correspon- 
ding initial state of LFSR-2 will be the vector generated by LFSR-2 after v 
steps of work with P~ as start. 

(B) The Multiple Speed Generator and the Perfect Linear Cipher 

i 
I LFSR- 1 

a ( t )  
. . .  

b(dt+l-1) 
. . ' 

LFSR- 2 
I 

1 

Figure 2. Multiple speed generator Figure 3. Perfect linear cipher 

In the multiple speed generator of Massey-Rueppel, the shift register 
LFSR-2 is clocked at a speed d 2 2 times as fast as the LFSR-1 and the 
output signal c ( t )  is produced according to 

1-1 

i -0 
c (t) - zlz (t + i ) b  (dt + i )  . 

The speed factor d is variable and is used as a part of the key of secrecy. 
As a result of various technical limitations, d cannot be too large, and one 
can estimate an upper bound d, ,  to it. Therefore, if the feedback polyno- 
mials f ( x )  and 8 ( x )  are known, then the cryptanalyst can determine d and 
the initial state of LFSR-1, and hence break the system by the LCT applied to 
an output segment of length N 

More interesting, however, is the perfect linear cipher considered in con- 
nection with the problem of introducing automatic authentication into 
crypto-systems. As pointed out in [7, p.4191, in the case of a block cipher, as 
a result of the existence of the diffusion effect, this can be achieved by ap- 
plying to the plaintext any error control code, linear or nonlinear, before 

1 + n + log2d,, . 



173 

encrypting. For stream ciphers in general, only non-linear or keyed codes 
can serve the purpose. In the perfect linear cipher, however, a single error in 
the plaintext will propagate over a range of length I ,  so linear codes can be 
used to realize effective authentication. But the analysis below will show that 
this will make the system insecure. 

Theorem 3. If the key generator in Figure 3 is an LFSR with known 
primitive feedback polynomial f ( x )  of degree I ,  and the plaintext is a string 
of codewords of a known systematic linear code of information rate I = k l n ;  
then the cipher can be broken by a ciphertext-only attack consisting of n 2  
LCT applied to a captured segment c of length 

u + logan 
+ n .  

1 - V  
N >  

Proof. Assume the speed factor known and let the generator matrix of 
the linear code be G = [ I h  : (pi,)]. The claimed ciphertext-only attack starts 
with the observation that if for some 0 Q w 6 n - 1, we assume x ( w )  to be 

1, we shall N - W  the first bit of a codeword, then for any 0 6 q < B - 1- 
n 

have n - k Linear relations of the form 
k -1 

1-0 
x(w+qn+k+j) x p i j x ( w + q n + i ) ,  0 < j  < n - k  - 1 (11) 

to express the parity signals in terms of the information signals. After ma- 
king these substitutions in the relations 

I 

i l l  
c ( t )  - x ( t )  + z . / ~ ( d t  - i>x(t  - i )  , fp < t < w +nB , ( 1 2 )  

we shall have a set of nB linear equations of the form 

L, ( n ( ~ - l ) , . . + ( m - l ) ; . . ~ ( ~ + ~ n ) ~ ( ~ + ~ ~ + l ) , . . ~ ( ~ + ~ ~ + k - l ) ; . . )  = c ( t )  

in I + kB unknowns. Thus we can apply the LCT to determine the initial 
state of the key generator and the number w .  Since the consistency proba- 
b i W  of (13) is P < 2nB-hJj-l 9 the mathematical expectation of the number 

of possible consistency alarms will be E < n2'p < 1 . False consistency 
alarms can be effectively discarded by checking the code structure of the 
recovered plaintext. This proves the theorem. 
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