
Batch RSA

Amos Fiat*
Department of Computer Science

Tel-Aviv University

Tel-Aviv, Israel

Abstract

Number theoretic cryptographic algorithms are all based upon modular mul-
tiplication module some composite or prime. Some secnrity parameter n is set
(the length of th e composite or prime). Cryptographic functions such as digi-
tal signature or key exchange require O(R) or O(fi mod&r multiplications
([DH, RSA, R, E, GMR, FS], etc.).

This paper proposes a variant of the RSA scheme which requires only

polylog(n) (O(log2 n)) modular multiplications per RSA operation. Inherent
to the scheme is the idea of batching, i.e., performing several encryption or
signature operations simultaneously. In practice, the new variant effectively
performs several modular exponentiations at the cost of a single modular ex-
ponentiation. This leads to a very fast RSA-like scheme whenever RSA is to
be performed at some central site or when pure-RSA encryption (vs. hybrid
encryption) is to be performed.

An important feature of the new scheme is a practical scheme that isolates
the private key from the system, irrespective of the size of the system, the
number of sites, or the number of private operations that need be performed.

1 Introduction

Almost all number-theoretic cryptographic schemes in use today involve modular
multiplication modulo a composite or prime. Some security parameter n is set, equal
to the length of the modulus N. In fact, factoring a composite or solving the discrete
log problem can be done in time exponential in Jz. Thus the real security
parameter is approximately &_ Throughout this paper, N will denote the modulus
and n = log(N).

Irrespective of the scheme, the private operation (decryption, digital signature
generation) must depend upon some secret string that is at least as long as the

*Work performed at UC Berkeley and ARL, Israel

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 175-185, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

176

security parameter. If the secret information used during the private operation were
shorter than the security parameter then the cryptanalyst could guess the secret and
break the scheme.

Various schemes for key-exchange, public key cryptosystems, and digital signature
have been proposed ([DH], [RSA], [R], [El, [GMR], [FS], . . .>. In several schemes the
secret is used as an exponent during the private operation and therefore the number
of modular multiplications required is at least the security parameter. (In fact, many
such schemes above require n modular multiplications per private operation, not
J-). For example, in the RSA scheme it makes no sense to choose a decryption
exponent shorter than the security parameter, (O (J W) , otherwise guessing this
exponent would break the scheme.

The Fiat-Shamir signature scheme [FS] does not use a secret exponent yet it too
requires as many multiplications as the security parameter. This is related to the
probability that the the prover cheats in the underlying zero-knowledge proof -
essentially, every multiplication cuts down the probability of cheating by a factor of
two.

In general, it is not true that the public operation (encryption, digital signature
verification) requires poly(n) modular multiplications. Various schemes have a fast
public operation, e.g., a small encryption exponent for RSA.

The main result in this paper is to circumvent the "lower boundn above, and
obtain fast public and private operations. We achieve polylog(n) multiplications per
private operation, in contradiction to the poly(n) "lower bound'. We cannot escape
using a long secret string, but the work is averaged over several private operations
bat ched toget her.

In practice, the problem with performance does not seem to be in a distributed
setting but rather with centralized applications. Todays microprocessors can perform
hundreds of modular multiplications in a few seconds. Large central mainframes are
obviously faster, yet much less cost-effective with respect to processing power.

Many applications require a centralized setting. Several suggested applications
of digital signatures are almost irrelevant without a large central clearinghouse, and
such a clearinghouse may be required to generate digitally signed receipts in response
to transactions. Another typical application is a mainframe that has to decrypt
many transactions, (financial data, session initiation key exchange, etc.). The scheme
presented here is particularly suitable for such centralized applications.

The underlying idea behind our new scheme is to batch transactions. Rather than
perform one full-scale modular exponentiation per digital signature as with RSA,
the scheme performs one full-size exponentiation and subsequently generates several
independent digital signatures.

Our scheme requires U(log2 n) multiplications for a batch size of n/(log2 n) mes-
sages. We also require up to two modular divisions per signature/decryption - this
is a low order t e r n and can be ignored.' Clearly one must optimize the batch size

'Modular division is equivalent to multiplication for quadratic algorithm (O(n2) bit operations
- e.g., JK] section 4.5.2 problem 35) and equivalent to O(log n) multiplications asymptotically (Le.,
O(n1og nloglogn) bit operations - [AHU] section 8.10).

177

for a specific modulus size, and one can obtain better results for smaller batches if
the modulus is (relatively) small.

Generally, we have a tradeoff between the batch size b and the number of multipli-
cations per signature. Let cra denote the number of modular multiplications required
for an n bit exponentiation (c M 1.5). Given a batch of b messages, b < n, we can
generate b digital signatures at a cost of m/b+ O(log2 b) multiplications per signature
(plus two modular divisions). For a fixed batch size k, the work required to generate
all k signatures is effectively equal to the work required for one RSA signature.

Similarly, rather than perform one full-size exponentiation to decrypt an %A-
encrypted block, the new scheme performs one such exponentiation and subsequently
decrypts several RSA-encrypted blocks. This is relevant in the context of mainframe
decryption (hybrid scheme or pure) and in the context of pure-RSA decryption gen-
erally. With respect to a pure RSA encryption scheme, this simply means that the
block size is some multiple of the RSA modulus size. We have a tradeoff between
block size and time, for larger blocks we spend less time overall.

Another application of the methods presented here is to generate Shamir's crypto-
graphically secure pseuderandom sequence [S] with the same gain in performance. In
this context, the block size penalty mentioned above does not occur. It is noteworthy
that Shamir himself considered his scheme in [S] impractical due to the great number
of multiplications required.

Even if we completely ignore the issue of performance and use full-sized encryption
exponents, one important point concerning Batch RSA is that only one root need be
extracted, irrespective of the batch size. This is related to the questions posed in
(AFK] on computing with and Oracle. Many private operations can be performed
by performing one private operation. The preliminary work to merge the batch into
one problem involves no secret data, neither does the split-up phase after the root
extraction. If the private operations involve decryptions then we can ensure security
even if the data flow path passes through insecure devices (multiply with a random
value whose appropriate root is known). The communications overhead is minimal,
one never needs to transmit more than n bits to the next stage (for both merge and
split-up phases). Thus, a multi-site multi-mainframe system could store the private
key on one weak processor (at a PC on the CEO's desk?), never transmitting more
than n bits to and from a site.

2 Background and Central Observation
An RSA digital signature to a message M is simply the e'th root of M modulo N.
The public key is the pair (N , e) whereas the private key is the prime factorization of
N , e is chosen to be relatively prime to Euler's totient function 4 of the public key
modulus N .

(mod 4 (N))
and then computes

M d (mod N) = M''" (mod N) .

Thus, every digital signature consists of one full-sized modular exponentiation. ([QC]

To generate a digital signature on M one first computes d = e-'

178

suggest the use of the Chinese remainder theorem so digital signature generation is
slightly faster).

Fundamental to getting polylog(n) multiplications per private operation is the use
of (relatively) small encryption exponents for RSA. Using a small encryption exponent
means choosing e to be some small constant (say 3), and generating the public key N
so that + (N) is relatively prime to e. However, choosing a small encryption exponent
says nothing about the decryption exponent d. Generally, d will be R(q5(N)). In fact,
if d were too s m d (less than exponential in the security parameter), it would allow
the cryptanalyst to attack the scheme. In some sense, we attain the effect of a very
small d (length polylog in the security parameter), without compromising security.

Our RSA variant grants some leeway in the value of e. For example, choose two
parameters S and R so that S and R - S are small (e.g., S = nc, R = S + 71.). A
public key N is chosen so that + (N) is indivisible by all primes in the range S, . . . , R.
A valid digital signature is of the form (3, M'Ib mod n), where s is any prime in the
range S, . . . , R.

Example 2.1:

tures M;I3 (mod N) and Mil5 (mod N) .
Let

To motivate this variant consider the following example:

Given two messages 0 < MI, M2 < N , we wish to compute the two digital signa-

M = Mf - M; (mod N) ,
I = M'/15 (mod N) .

= M:" (mod N) ; I6
Mf M2

- - - M;I3 (mod N) . r
Mil5

Note that we require one full-sized exponentiation to compute I = M'"' (mod N)
and a constant number of modular multiplications/divisions for preprocessing and to
extract the two digital signatures. The rest of this paper is devoted to the general-
ization of example 2.1.

3 BatchRSA
As above, let N be the RSA modulus, n = log,(N), and let b be the batch size.

Let el, e2, . . . , eb be b different encryption exponents, relatively prime to + (N)
and to each other. Choosing encryption exponents polynomial in n implies that their
product, E = n&, e;, is O(b1ogn) bits long. Choosing the encryption exponents as
the first b odd primes gives us log(E) = O(b1og b).

179

Given messages m1, m2, . . ., mb, our goal is to generate the b roots (digital signa-
t ures/decryp ti ons) :

m l l e l 1 (modN), mz l l e n (mod N) , . . . , m:"' (mod N) .

Let T be a binary tree with leaves labelled e l , e2 , . . . , eb. Let di denote the depth of
the leaf labelled ei, T should be constructed so that W = & di log ei is minimized
- similar to the Huffman code tree construction. For our main result of O(log2n)
multiplications per MA operation we could simply assume that T is a full binary
tree, asymptotically it makes no difference. In practice, there is some advantage in
using a tree that minimizes the s u m of weight times path length.

Note that W = O(log blog E). We will show that the number of multiplications
required to compute the b roots above is O(W + log N) .

Our first goal is to generate the product

M = m:le1 . m;/" . . . m$leb (mod N) .

It is not difficult to see that this requires O(W) multiplications.
Use the binary tree T as a guide, working from the leaves to the root. A t every

internal node, take the recursive result from the left branch (L), raise it to the power
ER where ER is the product of the labels associated with leaves on the right branch.
Similarly, take the result from the right branch (R) and raise it to the power EL which
is the product of the labels on the left branch. Save the intermediate results L E R and
REL (required later). The result associated with this node is L E R - REL. The product
M is simply the result associated with the root. (See figure 1, the ith leaf is labelled
with the ith odd prime).

We now extract the Eth root of the product M :

This involves O(1og N) modular multiplications - equivalent to one RSA decryption.
The factors of MilE are the roots we require. Our next goal is to break the

product M'lE into two subproducts, the breakup is implied by the structure of the
binary tree T used to generate the product M . We repeat this recursively to break
up the product into its b factors. (See figure 2).

Let e l , e 2 , . . . , ek be the labels associated with the left branch of the root of the
binary tree T . We define an exponent X by means of the Chinese remainder theorem:

X = 0 (mod e l) ,

X = 0 (mod e?) ,

X = 0 (mod e k) ,

X = 1 (mod ek+l),

X = 1 (mod ek+2),

X = 1 (mod eb).

180

ml m2 Total length of all exponents is 106
Value associated with ith leaf is message/ciphertext i

Step 2: Extract E’th root of product

Figure 1: Build up Product and Extract Root

181

Step 3: Break up product of roots
M ~ I E = mil3 . m’l5.. . m, 1/29

0

ml 113

Build up product stage Break up product stage (Same vertices)

Total length of all numerator exponents is 93

b w... M2
R = Sx/(M:’ - M F)

Xl Note: denominator exponentiation (MI ,
M f 2) , should be performed during the
product build up phase to save multiplications

Figure 2: Break up Product of Roots

182

There is a unique solution for X modulo &l ei = E .
By definition

k

X = (n e ;) . X l ,

X - 1 = (e i) . X z .

Let Pl = nt1 ei and Pz = @=,+I ei, then X = Pl .Xl and X - 1 = P2 -X2. Note that

i=l
b

k k + 1

log X < log E, log Xi +log Pi = log X, log Xz +log Pz = log X, log E = log P1 +log P 2 ,

and thus log Xi + log Xz < log X .
Denote

MI = mpl/cl . ,P l /e2 . . .mpl/ek

M2 = mk+l ' m k + 2

1 2 k rand
S / e k + i P a / e k + a . . . mb p 2 / e b .

Note that MI and M2 have already been computed, as the left and right branch values
of the root, during the tree based computation of M .

Raise MilE to the Xth power modulo N:
b

(M ' / ~) * = (n m ; lle*)x
i=l

k b 1 - - (n ,;/es s . * 1 . (n m ; / e *) f i . X z . n mflei

= MF.MP. rntfe,.

i=l k k + l i=k+l
b

i=k+l

To solve for n h k + 1 m:"' we rake

The recursive continuation of this procedure is clear.
Every leaf labelled 1 contributes log 1 bits to the appropriate exponents (X and XI

or X and X2) for every level between the leaf and the root. Thus, the overall number
of multiplications is O(W). The number of modular divisions required is o(b).

Lemma 1 Let el, e2, . . . , eb be b diflerent encryption ezponents, relatively prime to
$ (N) and to each other. Given messages ml , m2, . . ., mb, we can generate the b roots

to the power X1, rake M2 to the power x2,
and divide out. To solve for fl;"=, we divide M'lE by n & k + 1 mi lie; .

To summarize:

m l / e l (mod N) , mi'"? (mod N) , ..., ml/Cb b (modN)

in O(1og b(Cf=, log e ;) + log N) modular multiplications and U(b) modular dioisions.

By choosing the e; exponents to be polynomial in n and choosing the batch size
b = n/logz n we get O(n) multiplications overall and O(log2 n) multiplications per
root.
Remark: We could choose the encryption exponents to be exponential in polylog(n),
for any polylog, and still get polylog(n) multiplications for both encryption and de-
cryption operations.

183

4 Notes on Security
Use of small encryption exponents for RSA was first suggested by Knuth [K]. A
problem arises in the use of small exponents for standard RSA encryption if the
message is numerically smalI or messages related via some known polynomids are
encrypted to several different recipients. (M. Blum [B] for identical messages, HAstad
[HI for fixed polynomials).

We have a more serious problem with encryption in that if the same message is
encrypted with different (relatively prime) encryption exponents modulo the same
modulus then the message can be reconstructed.

In both cases, if RSA is used for key exchange then there is no problem, all
the cryptanalyst can learn are random values modulo N. Otherwise, it seems that
standard cryptographic practices of randomizing cleartext and appropriate feedback
mechanisms effectively overcome these attacks.

One variant of our scheme would be to use different encryption exponents for every
encryption or digital signature. E.g., the ith prime for the ith operation. As long as
there are no more than a polynomial number of transactions then both private and
public operations would require polylog(n) multiplications.

Shamir has shown that knowing ml/Pl, rn’lfi, . . . , r n ’ f p k cannot give us m’lm for
pairwise relatively prime pi [S] (as we could extract mllm using this procedure as a
black box).

A possible advantage to this one-to-one message-prime relationship is in that it
breaks the multiplicative relationship between different RSA bIocks. Standard RSA
lets you forge any digital signature for messages that are products of previous messages
and their inverses.

As the Batch RSA merger and split-up phases involve no secret information, this
lets us use Batch RSA to isolate the private key from the system, irrespective of
it’s size. All private transactions can be reduced to one root extraction that can
be solved on a weak and isolated processor. Every link-encryptor, mainframe, etc.,
requests one root, these roots can be merged again so the entire system is driven
by one root extraction. To ensure security in transit, the root requested can be
completely random using the standard Zero-Knowledge trick of multiplying the real
value with a random value raised to an appropriate power.

5 Constants and Practical Considerations
We assume that modular exponentiation requires c k modular multiplications for an
exponent of length k, c = 1.5. This is true for the standard exponentiation algorithm
if the exponent is chosen at random. None of our exponents are really random but
this is a reasonable upper bound on the work required.

Generating M as described in the proceeding section requires c - W multiplications.
Taking the Eth root requires c - log(N) multiplications, extracting the factors from
W E requires 2c - w multiplications.

In fact, we can do better - extracting the factors of M I I E can be done in c * W

multiplications provided that about W/4 additional multiplications are done when
computing M . Overall, the number of multiplications required to extract the b roots
is therefore 2c - W + W/4 + c - log N .

Reducing the number of multiplications to extract the factors of MIIE involves
a slight digression: Our goal is to compute yzl (mod N) and yz2 (mod N) . If
21 and 2 2 are random then it seems that this requires c - (log 21 + log 2 2) modular
multiplications. In fact, we can compute yZlnz2 (mod N) where Zl n Z a denotes the
bitwise and operation between Zl and 2 2 , compute yZlny2 and yZzn21 and multiply
the appropriate results to get yzl and yz2. It is not hard to see that computing the
three intermediate products can be done in log N + 3/4 - log N multiplications given
that 2, and 2 2 are chosen at random in the range 1.. . N . In addition, this can be
done without any significant cost in storage other than the area required to hold the
three intermediate results.

We can use the trick described in the last paragraph so as to compute the values
M p and M p as a byproduct of computing M , at a cost of 1/4(logXl + logXz)
multiplications. Recall that the final stage in computing M involves raising MI to
some exponent R and M2 to some exponent L. The same holds for all levels of the
recursion.

6 Acknowledgements

I am very grateful to David Chaum for the great deal of time he spent introducing
Moni Naor and myself to the world of untraceability in Berkeley coffee shops. This
work has its origins in Shamir’s cryptographically secure pseudo random sequence [S]
and in David Cham’s observation that multiples of different relatively-prime roots
are problematic in the context of untraceable electronic cash [CFN] as the roots can
be split apart.

I with to thank Noga Alon, Miki Ben-Or, Manuel Blum, Gilles Brassard, Benny
Chor, Shafi Goldwasser, Dick Karp, Silvio Micali, Moni Naor, Ron Rivest, Claus
Schnorr, Adi Shamir, Ron Shamir and Yossi Tulpan for hearing me out on this work.

References

Abadi, M., Feigenbaum, J., and Kilian, J., On Hiding Information from
an Oracle, Proceedings of the 19th Annual ACM Symposium on Theory
of Computing .
Alexi, W., Chor, B., Goldreich, O., and Schnorr, C.P., MA and Rabin
Functions: Certain Parts are as Hard as the Whole, SIAM J. Comput.,
April, 1988.

Aho, A.V., Hopcroft J.E., and Ullman, J.D., T h e Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

Blum, M., Personal communication.

185

Blum, M. and M i d i , S., How to generate Cryptographically Strong Se-
quences of Pseudo-Random Bits, SIAM J. Comp., 13,1984.

Blum, M. and Goldwasser, S., An Efficient Probabilistic Public Key
Encryption Scheme which Hides all Partial Information, Proceedings of
Crypto '84.

Chaum, D., Fiat, A., and Naor, M., Untraceable Electronic Cash, Pro-
ceedings of Crypto '88.

Diffie, W. and Hellman, M.E., New Directions in Cryptography, IEEE
Trans. on Information Theory, Vol IT-22, 1976.

El Gamd, T., A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory, Vol
IT-31, 1985.

Fiat, A., and Shamir, A., How to Prove Yourself: Practical Solutions to
Identification and Signature Problems, Proceedings of Crypto '86.

Goldwasser, S., S. Micali, and R.L. Rivest, A Secure Digital Signature
Scheme, SIAM J. Comput., April, 1988.

Histad, J., On using RSA with Low Exponent in a Public Key Network,
Proceedings of Crypto '85.

Knuth, D., The Art of Computer Programming, vol. 2: Seminumerical
Algorithms, 2nd ed., Addison-Wesley, 1981.

Micali, S., and Schnorr, C.P., Efficient, Perfect Random Number Genera-
tors, proceedings of Crypto '88.

Quisquater, J.-J. and Couvreur, C., Fast decipherment algorithm for RSA
public-key cryptosystem, Electronic letters, vol. 18, 1982, pp. 905-907.

Rabin, M.O., Digitalized signatures, in Foundations of Secure Computa-
tion, Academic Press, NY, 1978.

Rivest, R.L., Shamir, A. and Adleman, L., A Method for Obtaining Digital
Signatures and Public Key Cryptosystems, Comm. ACM, Vol. 21, No. 2,
1978.

Shamir, A., On the Generation of Cryptographically Strong Pseudorandom
Sequences, ACM Trans. on Computer Systems, Vol. 1, No. 1, 1983.

[Sl

	Batch RSA
	Abstract
	Introduction
	Background and Central Observation
	BatchRSA
	Notes on Security
	Constants and Practical Considerations
	Acknowledgements
	References

