
New Paradigms for Digit al Signatures and
Message Authentication

Based on Non-Interactive Zero Knowledge
Proofs

Mihir Bellare* Shafi Goldwassert

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

Abstract

Using non-interactive zero knowledge proofs we provide a simple new para-

digm for digital signing and message authentication secure against adaptive
chosen message attack.

For digital signatures we require that the non-interactive zero knowledge
proofs be publicly verifiable: they should be checkable by anyone rather than
directed at a particular verifier. We accordingly show how to implement non-
interactive zero knowledge proofs in a network which have the property that
anyone in the network can individually check correctness while the proof is zero
knowledge to any sufficiently small coalition. This enables us to implement
signatures which are history independent.

1 Introduction

1.1 A NIZK Proof Based Paradigm

We show how to use the random functions of [GGM] and the primitive of non-
interactive zero-knowledge proof systems introduced by [BFM] to obtain new para-
digms for creating digital signatures secure against adaptive chosen message attack.
Namely, any method that yields non-interactive zero-knowledge proof-systems, to-
gether with the existence of one-way functions, implies new ways to sign digitally.
Our digital signature construction is much simpler than all known constructions which

l Supported in part by NSF grant CCR87-19689 and DARPA Contract N0001489-J-1988
t Supported in part by NSF grant CCR-86-57527, DARPA Contract N0001489-J-1988, and by

a US Israel binational grant

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 194-211, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

195

are Secure against adaptive chosen message attack, putting the burden of the work
on non-interactive zero-knowledge proof-systems. Moreover, the signatures produced
are independent of previous signatures as long as the non-interactive proofs have this
property.

Another application of these ideas is to cryptographic protocols. For example,
we show how to implement a memoryless system for distributing and checking secret
identification numbers, such as phone calling cards, passwords, etc. By memoryless,
we mean that no secret data need be stored to verify the correctness of id numbers.
The only piece of secret information is kept by the center which generates the original
secret identification numbers.

1.2 Non-Interactive Zero Knowledge Proof Systems
The paradigms we present in this paper are based on the general ability to provide
non-interactive zero knowledge proofs.

Informally, a non-interactive zero knowledge proof of a theorem (NP statement)
T is a method by which A can give B a string m such that B, upon examining m, is
convinced that the theorem is true, but he obtains zero knowledge about the proof.

We will actually be interested in using non-interactive zero knowledge proofs
(henceforth abbreviated NIZK proofs) in a public key network. We will want that
0 For any pair of users A and B in the network it is the case that A can send NIZK

0 The number of theorems that can be proved to B is an arbitrary polynomial in

Such a public key network provides the natural setting for digital signatures.

proofs to B

the security parameter.

Non-interactive zero knowledge proofs were introduced in [BFM]. The current
literature contains a number of implementations of non-interactive zero knowledge
proof system in models that differ in some of their characteristics. In $3 we give a
formal definition of NIZK proof systems suitable for our purposes, and consider the
models and implementations available.

For digital signatures we need in addition that the proofs be publicly verifiable.
This raises some new issues.

1.3 Publicly Verifiable NIZK Proof Systems
Consider a proof of a theorem T provided by A. There are two possibilities with
respect to its verifiability:
(1) The proof is directed at a particular person B and only he can verify it

(2) The proof can be verified by any user in the system.

In the latter case we call the proof publicZy verifiable. The distinction is important
for our applications to digital signatures where the public verifiability of proofs will
correspond to signatures which anyone can check.

196

A new security issue that arises with publicly verifiable proofs is maintaining zero
knowledge with respect to a coalition of users: although the proof is by definition
zero knowledge to each user, can a group of users combine to extract knowledge from
it, and, if so, how large should this group be to do damage?

We implement publicly verifiable NIZK proofs addressing these issues in 36.

We emphasize again, however, that the paradigms we use in our applications do
not make reference to any particular implementation of NIZK proofs and rely only
on their properties as given in $3 together with public verifiability.

1.4 Random Functions
[GGM] introduced the concept of a pseudo-mndom collection of functions. This is a
collection of functions Fk = {fa : 1.1 = k} such that no probabilistic polynomial time
algorithm can distinguish a member f, of Fk from a truly random function. That
is, an algorithm whose only access to a function is through queries of its values at
various points will be unable to tell whether he is dealing with a member of f. or
with a truly random function.

Through the work of [GGM] and [ILL] we have

Theorem 1.1 The existence of one-way functions implies the existence of pseudo-
random collections of functions.

1.5 Related Results
The ideas we present here have already found other applications.

Micali [M2] has observed that by using interactive proofs rather than non-
interactive onea in our signature scheme one can implement undeniable signatures
[Cv] based only on the existence of any one-way function.

Feige and Shamir [F] showed that witness hiding proofs [FS] suffice to implement
a modified version of our signature scheme; we will discuss their result and its relation
to ours further in 86.3.

2 Notation
We use [GMRI’s notation and conventions for probabilistic algorithms.

We emphasize the number of inputs received by an algorithm as follows. If algo-
rithm A receives only one input we write “A(.)” ; if it receives two we write “A(- , -)”,
and so on. If A is a probabilistic algorithm then, for any input i the notation A(i)
refers to the probability space which to the string u assigns the probability that A,
on input i, outputs 0 (in the special case that A takes no inputs, A refers to the
algorithm itself whereas the notation A () refers to the probability space obtained by
running A on no inputs). Sometimes we wish to make the coin tosses explicit; in this
case we write for example A(a; i) for the output of A on input i with coins a.

197

If S is a probability space we denote by [S] the set of elements to which S assigns
positive probability.

If f(-) and g(+, - - -) are probabilistic algorithms then f(g(-, . . .)) is the probabilistic
algorithm obtained by composing f and g (i.e. running f on g’s output). For any
inputs z, y, . . . the associated probability space is denoted f(g(z, y, - .)).

If S is a probability space then z t S denotes the algorithm which assigns to z
an element randomly selected according to S. If S is a finite set, this denotes the
operation of selecting an element of S at random.

For probability spaces S, T , . . ., the notation
P (~ (z , y, * - -) : z t S; y t T ; * * -)

denotes the probability that the predicate p (z , y , - .) is true after the (ordered) exe-
cution of the algorithms z t s, y t T , etc.

A PP T algorithm means a probabilistic polynomial time algorithm. We assume
that a natural encoding of algorithms as binary strings is used.

If A and B are interactive TMs then (A 4+ B)(z) denotes the probability space
of their outputs (some of these outputs might be wmmon while others are private to
one or the other of the parties) on input 2. As for algorithms, we write for example -
B(c7) for the interactive TM B running with coins c7.

3 Non-Interactive Zero Knowledge Proof Sys-
tems

3.1 Definition
A non-interactive zero knowledge proof system for a language L consists of two stages.
The first stage, which could be interactive, establishes some information common to
the prover and the verifier as well as (possibly) some private information for each.
This pre-processing is performed independently of the theorems to be proved. In a
second stage the prover chooses and proves theorems to the verifier in zero knowledge,
based on the information from the first stage. This theorem proving stage is non-
interactive.

The prover and verifier are regarded accordingly as pairs P = (PI, P2) and V =
(K, K). The separation between the stages is total. For example, PI and P2 might be
completely distinct: the former a trusted center and the latter a prover in the usual
sense who sees only information that the center gives him.

Let k be a security parameter.

Definition 3.1 Suppose PI, P2, Vl are probabilistic interactive TMs and V2 is a de-
terministic interactive TM, all polynomial time. The pair P = (PI, Pz), V = (h, VZ)
constitute a non-intenzctizte proof system for a language L if for all sufficiently large
k the requirements of the following two stages are met :

198

(1) Pre-Processing Stage:

PI interacting with V1 yields three outputs p , Sp, SV of which p is common
to PI and V1 while Sp is private to Pl and Sv is private to &. If PI does not
obey the protocol then with high probability V1 outputs “cheating”.

(2) Theorem Proving Stage:

P2 proves theorems to V2 without interaction (the communication on any
input is a single message from P2 to h).

Completeness: For every 5 E L n (0, l}k
P(V2(1’, p , SV, 5, P) = accept : (p , SP, SV) + (PI * K)(lk) ;

P2(lk,P,SP,4) 2 1 -

P(Vz(lk,p, Sv, 2, P) = accept : (p , SP, Sv) + (PI * K)(lk) ;
)!3 4- P2(lk7p,Sp,z)) I 2 - 2 k .

2 - 2 k P
0 Soundness: For every interactive TM p2 and every 2 E 7; n (0 , l } k ,

In some cases we will also allow the proof system to have as additional input a
history of previous theorems and their proofs.

In order to define zero knowledge we first need the concept of a distinguisher.

Definition 3.2 A distinguisher for a language L is a pair (I , p) where p is a de-
terministic polynomial time predicate and I is a PPT interactive TM such that
I (l k , -, -, -) E L n (0, for aU k.

Notation: For any interactive TM we let (P1.R)(lk) denote the probability
space consisting of the outputs of the interaction together with the history of the
interaction and the coin tosses of q. Coupling the last two into a single entity h we
write (p , Sp, SV, h) for an element of this space.

where d, e > 0 are constants determined by the running time of I

Definition 3.3 A pair of sequences { p k } , {qk} of probabilities are indistinguishable
(written { p k) (q k }) if for all c > 0 and sufficiently large k it is the case that
IPk - qkl < k-‘-

199

Definition 3.4 A non-interactive proof system P = (Pl,P2),V = (VI,%) for L
is said to be a non-interactive zero knowledge proof system if there is a a pair
M = (Ml ,M2) of PPT algorithms such that the following is true: for any PPT
interactive TM and any distinguisher (I , p) it is the case that { p k (P , R , (1 , ~))) S

{*k(MIP1, M2, (1, P))) , where

qk(M1”,M29(I3p)) = P (p(lk ,O,P,S; ,h* ,z lB; . . -Z~dS~d) = 1 :
@’,SC,h*) + M1?1(lk); u t { o , l } k e ;

3 1 + I (u ; lk ,p+, s;, h*, E) ; p; + Mz(lk,p*, s;,21) ; . . . ;

B;. M2(lk,P*, S;,4 1 *
z p +- I(0; I k , P * , s;, h*, - - - Z k d - l & d - l) ;

(Mlpl means MI with 6 as an oracle). We call M = (Ml, M2) the simulator.

Definition 3.5 A language L is said to have a non-interactive zero knowledge proof
(NIZK proof) if there exist P = (P,,P,),V = (Vl ,h) which constitute a non-
interactive zero knowledge proof system for it.

3.2 Remarks
General:

We assume that V2 is deterministic only for simplicity and because it is the case
in all current implementations. For greater generality we could allow it coins. Notice
that although this would enhance its power in the theorem proving stage the definition
of zero knowledge would not have to change: the non-interaction implies that the view
of the verifier need not include the coin tosses of V2.

The Pre-Processing Stage:
Our definition is more general than we need. In the application to signatures

there is implicitly a trusted center: since the signer will be proving theorems it is to
his advantage to have correct information from the pre-processing stage. In general,
however, we must guarantee the privacy and make sure that neither party can cheat.

The Theorem Proving Stage:
The reason for the extremely small error probability of 2-2k in the completeness

and soundness conditions is as follows. Since the prover can pick his theorem after
seeing the output of the first stage, we would like that for most such outputs, there
does not ezist a false statement that can be proved. Our condition guarantees this.
More precisely, if we call (p, S p , SV) E (Pl H &)(lk) good if &(SV) accepts PZ(SP)’S
proof for all z E L n (0, l } k and does not accept any proof for all z E t n (0, l}k then

P((p , Sp, SV) is good : (p , S p , SV) t (PI tt K) (l ‘)) 2 1 - 2-k .

The Zero Knowledge:
A distinguisher (1 , ~) models a two stage process. The first is a requesting stage

in which I , given (p , Sv, h) fiom the pre-processing stage, asks the prover to supply
zero knowledge proofs, with respect to p , of theorems of its choice. Its requests are

200

adaptive, depending on responses to previous requests. This corresponds to what we
will want with digital signatures where the theorems that the signer proves are chosen
by an adversary who has seen the public key and responses to previous requests for
signatures. In a second stage the predicate p is computed on the received information.
Our definition of zero knowledge asks that there be a simulator which could interact
with this process I in such a way that it would not know that it was not interacting
with the real prover; that is, the value of the predicate p would be 1 with essentially
the same probability in both cases.

Our simulator accordingly simulates the two stages independently. It first creates
information (p', Sc, h') pertaining to the pre-processing stage. This is done by MI
who has blackbox access to a possibly cheating verifier V,. In the second stage M2 is
used to supply simulations of zero knowledge proofs that I requests.

there was such an MI, but
to avoid a profusion of quantifiers we stick to the simple case.

A more general definition would be that for every

Public Verifiability:
For publicly

verifiable proofs the secret information of the the verifier is either void, or there are
lots of verifiers each of whom has his own secret. This is considered further in $6.

The definition as it stands does not address public verifiability.

3.3

All the models described in the literature so far do fit our definition. We discuss
briefly here these models and implementations.

The first model of NIZK proofs was introduced by Blum, Feldman and Micali
[BFMJl. In this model the prover and the verifier share a common random string
with respect to which the prover provides his proofs. In terms of our definition, p is
the common random string and there are no private inputs from the first stage (Sp
and SV are both the empty string).

The common string must be random to ensure both the validity of the proofs and
their zero-knowledge. For our application to digital signatures we would have the
legal signer publish a random string in his public file and give proofs with respect to
it. Other users, functioning as verifiers, would read this and check his proofs. Since
the signer wishes to avoid forgeries, it is to his interest to pick the string to be truly
random, and he will do so. Note that the proofs are indeed publicly verifiable. The
drawback of the current implementation however [Ml], is that a proof depends on
previous proofs resulting in signatures which depend on previous ones.

The model of Kilian, Micali and Ostrovsky [KMO] has an initial interactive pre-
processing stage between prover and verifier. This model fits our definition with p
being the empty string, S p the pair of seeds (s0,sI) that P oblivious transfers to

The implementation described in the original [BFM] paper is not known to have a proof; a
correct scheme has been announced by S. Micali [Ml]. However we do not know whether this
scheme satisfies our more stringent zero knowledge requirements. It does however satisfy the more
relaxed requirement stated in Appendix B which, as we indicate there, is really all we need for
signatures.

A Look at Available Implementations

20 1

V , and Sv the seed (either so or 81) that V receives. However the fact that there
is an interaction between prover and verifier means that we cannot use it for the
applications described in this paper.

Proposed in [BM2] is a public key system under which Kilian-Midi-Ostrovsky
type oblivious transfer based proofs can be implemented. In this model a single
verifier can receive proofs from many provers and our message authentication between
pairs of users (55.1) can be implemented in this system. Moreover, some of the
implementations in pM2] are quite efficient. In terms of our definition, p would be
the verifier's public key and SV his secret key while S p would be the empty string.

4 NIZK Proofs and Digital Signatures

Here we show how NIZK proofs together with one-way functions yield digital signa-
tures.

4.1 H o w to Sign

Let E be a probabilistic public key encryption algorithm [GM] (we implement this
via the bit commitment scheme of Naor [N] which is based on any one-way function).
Let Fk = {f, : 1.1 = k} denote a collection of pseudo random functions as defined
in [GGM]. Assume we have a publicly verifiable NIZK proof system for some NP
complete language. For our purposes the pre-processing stage of this NIZK proof
system is best thought of as an algorithm 2 which on input a security parameter
outputs just some public information p . We denote by NIZK,(T) a NIZK proof of T
with respect to p .

User U's public file is PKu = (Ik, E , a , p) and his secret file is SKU = (r , s) , where

a k is the security parameter

s E (0, l}k is the randomly chosen index to a pseudo-random function from Fk

a a = E (r , s) is an encryption of s.

p t Z(lk") is the information needed for the NIZK proofs (c is a constant).

Then, the digital signature of a document D is defined to be

o(D) = (D, R, NIZKP(T~xp,d)

3s3r [a = E (r , s) and R = f,(D)] .
Since T ~ K , D , R is an NP statement, there exists a non-interactive zero-knowledge proof
N I Z K p (T p ~ , ~ , ~) of it. The public verifiability of the NIZK proof means that this is
really a signature: anyone can check the validity of a (D) given the signer's public key
PKv.

where R = f d (D) and TPKP,R is defined to be the NP statement

202

4.2 Comparison with Previous Signature Schemes
In all previous signature schemes secure against adaptive chosen message attack
[GMR], [BMl], [NY] the signature of the i-th document D; was a function of all
the previous signatures of documents D1,. . . , Di-1 (we will refer to such schemes as
history dependent). The sizes of signatures thus quickly become very impractical. Al-
though methods for dealing with this problem and improving the efficiency of these
schemes have been suggested (by Levin, with improvements by Goldreich [GI), these
methods are complicated and cumbersome. No such problems exist with our scheme
where the signature of a document is independent of previous signatures, as long
as the underlying NIZK proofs have the property of being independent of previous
proofs. Our implementations of NIZK proofs in $6 do have this property.

4.3 Assumptions
In terms of assumptions we have shown that a digital signature scheme secure against
adaptive chosen message attack exists if one-way functions and publicly verifiable
NIZK proof systems exist. It is known that digital signature schemes secure against
adaptive chosen message attack exist if one-way permutations exist [NY], and it is
clear that the existence of digital signatures implies the existence of one-way functions.
The relation of NIZK proofs to one-way permutations is not known.

4.4 Security
We recall that in an adaptive chosen message attack an adversary can request from the
true signer the signature of any number of messages of his choice. Moreover, he can
ask for these signatures one by one, with his requests depending on the signatures
provided in response to previous requests. The scheme is secure against adaptive
chosen message attack if, after requesting signatures in this fashion, the adversary
remains unable to forge the signature to any message whose signature he has not
previously seen. This notion of security, which was introduced in [GMR], represents
the strongest possible natural notion of security for a digital signature scheme.

Theorem 4.1 The digital signature scheme of $4.1 is secure against adaptive chosen
message attack.

A very rough intuition of why this is true is the following. By [GGM] an adversary
who can request to see the value of a random function f, on a polynomial number of
strings D1, Dz, . . . of his choice cannot compute even one additional pair D, R such
that R = fd(D) and D # D; for all i. The only difference in our scenario is that
the adversary sees along with the set of {D;,R;} where R, = f s (D;) for all i, many
NIZK,(TD,), i.e proofs that in fact R; is the result of applying fb to Di. But, since
these are zero-knowledge proofs they convey no extra knowledge and the [GGM] proof
applies.

A more complete proof is in Appendix A.

203

5 Further Applications of the NIZK Paradigm

The NIZK proofs based paradigm of the previous section can also be adapted to
message authentication and the memoryless distribution of id numbers.

5.1

Note that the property of public verifiability is not necessary for message authenti-
cation between two users. We simply replace the use of publicly verifiable proofs as
in §4 by NIZK proofs from A to B.

Efficient implementations of NIZK proofs between pairs of users are known [BM2].

Message Authentication between Pairs of Users

5.2 Memoryless Distribution of Identification Numbers

Consider an application where a central authority like the phone company, or a pass-
port producing facility needs to generate unique unforgeable id numbers for its users.
The users should be able to present their identification numbers in numerous dis-
tributed local stations, and the local station should have the capability to check the
validity of the id.

One previous solution to this problem was presented by [GGM] where they used
random functions applied to the user name to create the user id number. The dis-
advantage of that proposal was that the all the local stations needed to keep secret
the index to the random function. Using non-interactive zero-knowledge proofs that
disadvantage can now be removed. The idea now is for the center alone to keep secret
the single index s to the random function, together with a value r , and for the center
to publish in a public fde the pair (E ,a) where Q = E(r,s) . When user U needs
an id, the center computes I = f a (U) and gives I to U along with a non-interactive
zero-knowledge proof, NIZKcenter(T) where T is the NP statement

3 3 3 [a = E (r , s) and I = f.(U)] .
The local center has no knowledge of U or any special information whatsoever.
Whenever U needs to authenticate himself, he simply shows the local center I and
NIZKcenter(T) which convinces the local center that the user possesses a legal id
number.

6 NIZK Proof Systems with Public Verifiability
We sketch here very briefly some implementations of publicly verifiable NIZK proof
systems. In these systems there is a center who publishes some information p that
everyone can see, and then gives each user B some secret information SB. Only the
public part p is necessary to prove theorems, and anyone with a secret key can check
such a proof.

204

6.1 A Simple Scheme
We can get a first, simple scheme using methods similar to [BM2]. Let k be the U S U ~

security parameter. The center picks at random a number of probabilistic encryption
algorithms [GM] with their corresponding decryption keys; let these be

{ (E ; , j 7 D ; i) : i = 1 , . . . ,k and j = 0 , l) .
The center now publishes

P = ((El,O,El,l),(E2,0,E2,1), - - * ~ (E k , C l , E k , l))

as a key visible to all users in the system. To any user B who wishes to be able to
verify proofs, the center, having picked jl,. . . , j k E (0 , l) at random, sends’

SB = (Dlj, DZj, 3 * * 7 D k , j b) -
User B makes this his secret key.

The following encoding of proofs was used by Kilian, M i d i and Ostrovsky [KMO]
(it arises from Hum’s ZK proof of Hamiltonian cycle) and will allow us to prove
theorems in zero knowledge.

Theorem 6.1 [KMO] Suppose A has a NP theorem T and a proof of it. Then she
can compute a sequence

3 = ((31,0,Sl,l), (32,0, sZ,l), - - 7 (sk ,O, Sk,l))

of pairs of strings which encode a proof of T in the following sense:
(1) if the proof is incorrect then for each i = 1,. . . , k there is a j E (0 , l) such that

(2) if for each i = 1,. . . , k one does not see both s ; , ~ and s ; , ~ then the proof is zero
seeing s i j will reveal the incorrectness of the proof

knowledge.

A’s proof of T is now just

NlzKp(T) = ((rl,O,rl,l), (TZ,O,fZ,l),-- - 7 (rk,O,rk,l))

where r;j = E;,j(~i, j) . Each user B can decrypt exactly one of r;,O and ri,l at random
for each i. Theorem 6.1 thus guarantees that this is a non-interactive zero knowledge
proof system.

In the terminology of [BM2], we have established oblivious transfer channels;
however in our case the proof does not depend on any particular verifier but only on
P .

Note that in this scheme the proof of a theorem does not depend on the proofs of
previous theorems in contrast to [BFM]+[Ml].

Also note that A is not special: any user can use the central public key p to
provide proofs that all the others can check. All users can thus do digital signatures,
publishing in their individual files the necessary information as described in $4 and
using the central key for the NIZK proofs.

The drawback of this scheme is that two bad users could combine to break it. If
a pair of users put their secret keys together they might know both Di,o and D ~ J for

If the center is not trusted, oblivious transfer can be used here instead, aa described in pM2].

205

some i and then the proof would not be zero knowledge to them. They could then
forge signatures. The next scheme is more robust in this regard.

6.2

Here we show how to provide security against any O(k) users combining. However,
the size of the proofs will grow as a function of k. The key to the stronger publicly
verifiable NIZK system is the use of a different method, due to Kilian [K], for encoding
proofs.

Zero Knowledge to Many Users Simultaneously

Theorem 6.2 [K] Suppose that A has a theorem T of size n and a proof of it. Then
she can construct a tableau T (T) for 2‘. This consists of a sequence (Z, . . . , Inkp(nk)),
where each is a sequence of p(nk) strings (p is some fixed polynomial), such that
the followihg are true:
(1) If T (T) does not encode a correct proof of T then there is a “check” that reveals

this. A check is some predicate that is evaluated on some four positions in the
sequence

(2) If for all i one sees 5 k - 1 positions of 3 then no knowledge about the proof
will be revealed.

The strings which constitute the elements of the tableau are of constant length.

and there is a total of p(nk) such checks.

For our scheme the center selects at random nkp(nk)2 probabilistic encryption
algorithms together with their decryption keys; let these be

{(E;,j ,Dij) : i = 1,. .. ,nkp(nk) and j = 1,. . . , p (n k) } .
The center now publishes

p’ ((E l , l , . . . , ~ l ~ (n k)) , (~ ~ , l , . . . , E Z , p(nk)),...,(Enkp(nk),l,.. .~Enkp(nk),p(nk))) -
When user B requests a secret key the center picks, for each i = 1 , . . . , nkp(nk) , one
of the p (n k) checks at random and sends to B

SB = {(Di,ji,~,~;~i,~,~;,ji,~,~;,ji,,) : i = 1 ,... ,nkp(nk)}
where 1 5 j;,l,j;,z,j;a, j;,* 5 p (n k) are the four tableau positions which make up the
chosen check (2 = 1 , . . . , nkp(nk)) . User B makes this his secret key.

When user A wishes to prove a theorem T she makes a tableau T (T) =
‘&, . . . , Tnkp(nk) and encrypts each position with the corresponding encryption dg0-
rithm from p . Any user B can see exactly one random check per tableau and hence
will detect a false proof with probability

21- 1-- 2 1 - e-nk , (&)) nkp(nk)

by property 1 of a tableau as given in Theorem 6.2.
users in the system, pooling their secret keys, see

5 k - 1 positions of each z. So by property 2 of Theorem 6.2 the proof will be zero
knowledge to this coalition.

Any combination of 5

206

6.3 History Independent Signatures
Plugging the above implementation into the signature scheme of $4 yields a history
independent signature scheme in this model where there is a network of users each pos-
sessing certain special public and secret keys enabling NIZK proofs. The question of
whether history independent signatures can be achieved without such preprocessing
still remains. Feige and Shamir [F] answered this in the affirmative. They modify our
scheme 50 that it uses witness hiding proofs, and then use the [DMP] implementations
of one-theorem NIZK to implement the latter. The resulting scheme is based on the
specific assumption of quadratic residuosity.

207

A Appendix: Proof of Security for the Signature
Scheme

Here we give a more formal proof of Theorem 4.1.
Suppose 3 is a forger who, after an adaptive chosen message attack, succeeds in

forgery with probability ~ (k) 2 k-", where e > 0 is some constant and the probability
is over the choice of the public and secret keys and the coin tosses of both the signer
and 3. We propose to derive a contradiction.

We let Y denote the verification algorithm: Y takes as input a public key P K =
(Ik, E, a, p) and a signature (D, R, /3) and outputs 1 if€ /3 is a proof of TPK,D,R with
respect to p .

The proof below is for a model, like [BFM], in which the verifier has no secret
information (a little more care is required in the case of a model like that of 56 where
each verifier has a separate secret, and we discuss this in the final paper). For our
purposes the pre-processing stage is replaced by the algorithm Z which on input a
security parameter outputs simply some public information p for proofs.

We will consider five experiments. Each experiment has the following format:
0 Make Public Key: Create some value P K which will serve as the public key

0 Sign: Invoke the forger 3 on P K and respond in some manner to his requests

0 Output: Output either 0 or 1 based on the success of F.
The experiments are as follows.

Eo(lk): (True signing process)

0 Make Public Key: Let s , r t { O , l } k ; a t E(r , s) ; p t Z(lk'). Let P K =

0 Sign: Invoke the forger F on input P K . When he requests the signature of a

0 Output: h A Output 1 iff the forger outputs a forgery (D, R , @) such that

(Ik,E,W-+

document D give him the signature (D, f,(D), N I Z K p (T ~ ~ , ~ , j , (~))) .

V (P K , (D , R,p)) = 1.

- A *

E1(l'): (Change acceptance criterion)
0 Make Public Key: Let s , r t { O , l } k ; a t E (r , s) ; p t Z(1"). Let PK =

0 Sign: Invoke the forger 3 on input P K . When he requests the signature of a
document D give him the signature (D, fd(D), N I Z K p (T p ~ , ~ , j , (~))) .

Y (P K , (D , R , B)) = 1 and, in addition, fa@) = R.

(I k , E , W J) .

A A A

0 Output: Output 1 iff the forger outputs a forgery (D,R,P) such that

Ez(lk): (Use Simulator for Proofs)

208

0 Make Public Key: Let s ,r t ; a t E(r,s) ; p* t M1(lk")3. Let P K =

Sign: Invoke the forger 3 on input P K . When he requests the signature of a

0 Output: Output 1 iff the forger outputs a 'forgery (D,R,/3) such that

(l k , ~ , a , p ') .

document D give him (0, f .(D),p') where p' = M2(lkc,p', T P K ~ , , , ~)) .

Y (P K , (E , R , s)) = 1 and, in addition? f.(B) = R.
A * -

E3(lk): (Change the encryption)
0 Make Public Key: Let s,s',r t { O , l } k ; CY c E(r,s') ; p* + M l (l k C) . Let

0 Sign: Invoke the forger 3 on input P K . When he requests the signature of a
= M,(lkc,p',T~~,~,~.(~)) is the

Outfut 1 iff the forger outputs a forgery (D,R,/3) such that

PK = (l k , E , a , p ') .

document L) give him (D , f , (D) , p) where
result of running the simulator on input the (false) statement TPX,D,/,(D).

V (P K , (o^,k,a)) = 1 and, in addition, f.(Q = R.
- A -

0 Output:

E4(lk): (Use a random function)
0 Make Public Key: Let s',r t (0, ; a t E(r,s') ; p* t Mi(lk'). Let P K =

0 Sign: Invoke the forger 3 on input P K . When he requests the signature of a
= M2(lkc,p*, TPK,D,R)

0 Output: Let R' - * - t (0, lIk. Output 1 iff the forger outputs a forgery (D, R, S) such

(Ik? E , w*).

document D give him (D , R, /I*) where R t (0, l}k and
is the result of running the simulator on input the (false) statement TPKP,R.

that Y (P K , (D, R, a)) = 1 and, in addition, 3 = R'.

A l l

For each i let p i (k) = PIE;(lk) = 11.

Fact 1: po(k) is by definition the probability e (k) of successful forgery.

Fact 2: p4(k) <_ 2-k since the probability that

Now

= R' = 2-k.

= POP) -P4W
= C~i(k) -pi+l(k) 7

3

i=O

We thus have four casez in each of which we derive a contradiction.

With the pre-processing stage represented by 2 we do not have a history and coin tcmse~ h in
the simulator's output.

209

This is not possible simply by virtue of having a proof system. With probability
A I l

2 1 - 2-k it is the case that fa(Q = 8 iff V (P K , (0, R, p)) = 1.

Case 2: p l (l ~) - p z (k) 2 9.
This would imply an ability to distinguish simulated proofs from real ones. In

the final paper we will show how to use the forger to construct a distinguisher (1 , ~)
which tells apart real proofs of theorems from simulations of proofs of these theorems.

Case 3: p2(l~) - p3(k) 2 9.
We will distinguish between encryptions of different values.
On input (I k , so, sl, a) where

the following algorithm A predicts b:
0 Make Public Key: Let p* t Ml(lk ') and set P K = (l k , E , a , p *) .
a Sign: Invoke the forger 3 on input P K . When he requests the signature of a

0 Output: Outiut 1 iff the forger outputs a forgery (D, R,B) such that

The probability that A correctly predicts b is

SO, $1 + (0, ; b (0,1} ; a E (S b) 9

document D give him (D , fal (D) , ,f?*) where /? = Mz(1 " , p* , TPK,DJ,, (~ 1) .

Y (P K , (B,R,,f?)) = 1 and, in addition, fa,@) = 8.
h l *

1 1
- P [A = l l b = 11 + -P[A = Olb = 01
2 2
1 1
2

P [A = b] =

= - p z (k) + z(1 - P 3 (k))

contradicting the indistinguishability of encryptions.

Case 4: p 3 (k) -p4(k) 2 q.
We will distinguish [GGM] functions from random functions.
Given an oracle 0, for a function f : (0, l}k -+ (0, l}k, the experiment A o f (l k)

is

0 Make Public Key: Let s',r t (0, l}k ; a e E(r,s') ; p* t Ml(lk') . Let P K =

0 Sign: Invoke the forger 3 on input P K . When he requests the signature of a
document D give him (0, R,/3*) where R = O,(D) and /? = M~(~',~*,T''K,.D,R)-

0 Output: Output 1 iff the forger outputs a forgery (D,R, /3) such that
V (P K , (8 , a , f i)) = 1 and, in addition, 8 = O,(F).

Then

(I k , E , Q , P *) .

A * -

PIAof = Ilf + Fk] = p 3 (k)

PIAof = 111 6 Hk] = pr(k) ,
where Hk denotes the set of all functions from (0, l}k to (0, l}k. We thus contradict
[GGM].

21 0

B Appendix: Using a Simpler Zero Knowledge
Definition

Is it possible to prove our signature scheme correct with a definition of zero knowledge
which is simpler and more like the usual one? We do not know how to do quite that,
but we can show something essentially as good: a modified scheme can be proved
correct with a simple definition of NIZK.

A simpler definition of the zero knowledge would be of the following form.

Notation: For any constant c > o let L k S = (L n (0, 1Ik) x . . - x (L n (0, I}~).
\ f .f

kc

Definition B.l Let P = (f l , P 2) , V = (K, &) be a non-interactive proof system for
a language L , and let be a PPT interactive TM. Let c > 0 be a constant. The
view of the cheating verifier P = (vl, b) on any input 5 E L k C is

view&k,z) = { (P , S V , h , Z , B) : (P,SP,SV,h) + (Pl.Q(lk);
/% P2(lk,SP,p,21) ; ; p k c P2(lk,SP,P7ZkC) -

where ,8 = (B1,. . . , @kc).

Definition B.2 A non-interactive proof system P = (PI, P,), V = (K, &) for L is
said to be a non-interactive zero knowledge proof system if for any PPT interactive
TM 91 and any constant c > 0 there is a PPT algorithm M such that the ensem-
bles { M (l k , Z)) ~ E L ~ ~ and { Viewq(lk, I)}zELkc are computationally indistinguishable,
where P = (fi, K).

(The indistinguishability is as usual in terms of poly-sized families of circuits).
Crucial to constructing a signature scheme secure against adaptive chosen mes-

sage attack based on this definition is a theorem of Even, Goldreich and Micali [EGM]
which states that any scheme secure against random message attack can be trans-
formed into one secure against adaptive chosen message attack. Moreover, a signature
in the transformed scheme is independent of previous signatures if this was true for
the original scheme. We are thus done given

Theorem B.l The digital signature scheme of 54 is secure against random message
attack under the above definition of NIZK proofs.

Proof: In the final paper. 0

References

[BMl] Bellare, M., and S. Micali, "How to Sign Given Any Trapdoor Function,"
STOC 88.

[BM2] Bellare, M., and S. Micali, "Non-Interactive Oblivious Transfer and Appli-
cations," CRYPT0 89.

21 1

Blum, M., P. Feldman and S. Micali, "Non-Interactive Zero Knowledge and
its Applications," STOC 88.

Chaum, D. and H. Van Antwerpen, "Undeniable Signatures," CRYPTO 89.

De Santis, A., G . Persian0 and S. Micali, "Non-Interactive Zero Knowledge
Proof Systems," CRYPTO 87.

Even, S., 0. Goldreich and S. Micali, "On-line/Off-line Digital Signatures,"
CRYPTO 89.

Feige, U., personal communication, September 1989.

Feige, U. and A. Shamir, "Zero Knowledge Proofs of Knowledge in two
Rounds," CRYPTO 89.

Goldreich, O., "Two Remarks Concerning the GMR Signature Scheme,"
MIT Laboratory for Computer Science Technical Report 715, (September
1986).

Goldwasser, S. , and S. Micali, "Probabalistic Encryption," Journal of Com-
puter and System Sciences 28 (April 1984), 270-299.

Goldreich, O., S. Goldwasser, and S. Micali, "How To Construct Random
Functions," Journal of the Association for Computing Machinery, Vol. 33,
No. 4 (October 1986), 792-807.

Goldwasser, S., S. M i d i and R. Rivest, "A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks," SIAM Journal on Computing,
vol. 17, No. 2, (April 1988), 281-308.

Impagliazzo, R, L. Levin, and M. Luby, "Pseudo-Random Generation from
One-way Functions," STOC 89.

Kilian, J., "Founding Cryptography on Oblivious Transfer," STOC 88.

Kilian, J., S. Micali and R. Ostrovsky, "Efficient Zero Knowledge Proofs
with Bounded Interaction," CRYPTO 89.

Micali, S., personal communication, April 1989.

Micali, S., personal communication, August 1989.

Naor, M., "Bit Committment using Pseudo-Randomness," CRYPTO 89.

[NYl Naor, M., and M. Yung, "Universal One-way Hash Functions and their
Cryptographic Applications," STOC 89.

	New Paradigms for Digit al Signatures andMessage AuthenticationBased on Non-Interactive Zero Knowledge Proofs
	Introduction
	A NIZK Proof Based Paradigm
	Non-Interactive Zero Knowledge Proof Systems
	Publicly Verifiable NIZK Proof Systems
	Random Functions
	Related Results

	Notation
	Non-Interactive Zero Knowledge Proof Systems
	Definition
	Remarks
	A Look at Available Implementations

	NIZK Proofs and Digital Signatures
	How to Sign
	Comparison with Previous Signature Schemes
	Assumptions
	Security

	Further Applications of the NIZK Paradigm
	Message Authentication between Pairs of Users
	Memoryless Distribution of Identification Numbers

	NIZK Proof Systems with Public Verifiability
	A Simple Scheme
	Zero Knowledge to Many Users Simultaneously
	History Independent Signatures

	Appendix: Proof of Security for the Signature Scheme
	Appendix: Using a Simpler Zero KnowledgeDefinition
	References

