
The use of Encryption in Kerberos for Network Authentication

John T. Kohl
Digital Equipment Corporation

MIT Project Athena
Cambridge, Massachusetts

Abstract

In a workstation environment, the user often has complete control over the worksta-

tion. Workstation operating systems therefore cannot be trusted to accurately identify

their users. Some other method of authentication is needed, and this motivated the

design and implementation of the Kerberos authentication service.

Kerberos is based on the Needham and Schroeder trusted third-party authentication

model, using private-key encryption. Each user and network server has a key (like a

password) known only to it and the Kerberos database. A database server uses this

knowledge to authenticate network entities to one another.

The encryption used to achieve this authentication, the protocols currently in use

and the protocols proposed for future use are described.

1 Introduction

This paper gives a brief overview of Kerberos, an authentication system developed at Project
Athena at M.I.T., and describes the rationale behind and uses of encryption in Kerberos to
achieve its goals. More complete descriptions can be found in [8, 41, and in a forthcoming
Request For Comments.

It begins with a quick overview of the message scheme used to achieve authentication,
then describes the use of encryption in the current protocols (including its flaws), and
finishes by describing modifications proposed for the next version of the Kerberos protocols.

2 Terminology

Throughout this paper, we use certain terms relating to Kerberos which may be unfamiliar
to the reader. Below is a definition of such terms.

principal An entity which shares a private key with some Key Distribution Center (KDC),
and therefore can participate in authentication exchanges. A principal’s name is
bound to a private encryption key in the KDC’s database. The current implementation
allows two-part names for principals, consisting of a name field and an instance field.
The realm of a principal is determined by the realm name assigned to the KDC with
which it shares a private key.

server A principal which provides a Kerberos-mediated service to other principals.

client A principal which desires to use a service.

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 35-43, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

36

realm An autonomous unit of authentication authority. All principals in a realm share a
key with that realm’s KDC. Realms may share keys with each other to &ow authen-
tication between principals in different realms.

session key A randomly-generated encryption key contained in a Ticket or in Credentials.

Ticket A data structure cryptographically sealed under a server’s private key. The ticket
contains information necessary for a principal to verify another’s identity based on
the trust of the KDC. Tickets can be re-used until they expire.

Credentials A data structure composed of a Ticket and the information needed by a client
to use that Ticket.

Authent icator A data structure cryptographically sealed under a temporary key. The
authenticator contains information used to aid in replay detection. An authenticator
may only be used once.

3 Kerberos overview

Kerberos provides a means for two principals (for example, a workstationuser and a network
server) to verify each other’s identities in the context of an open (i.e. unprotected) network
system. This must be accomplished without relying on authentication by the workstation
operating system or host addresses, without requiring physical security of all the hosts on
the system, and under the assumption that packets traveling dong the network can be read
and inserted at will. Kerberos performs authentication under these conditions as a trusted
third-party authentication service using private key encryption.

Kerberos is based on protocols described by Needham and Schroeder [5] , Voydock and
Kent [9], Denning and Sac0 [l], and Watson [lo]. A central Key Distribution Center (KDC)
maintains a database of principals and private keys (currently only DES keys are supported).
When a principal desires to authenticate with some service, it sends a request to the KDC,
which responds with a Ticket and other control information encrypted in the principal’s
private key. The principal decrypts the reply, stores the contents for possible future use,
and then forw.ards the Ticket plus a freshly-constructed Authenticator to the service. The
service can verify the identity of the client by examining the Ticket (which itselfis encrypted
in the service’s private key), and verifying its contents with the information contained in
the Authenticator.

The current protocols a re known as “Version 4’’ (there were lower-numbered prototype
protocols); the protocol revision underway will yield Kerberos protocol “Version 5”.

4 Version 4 Protocol

4.1 Encryption

The basic encryption algorithm used in the current version of Kerberos is the U.S. National
Institute of Standards and Technology (NIST)’ Data Encryption Standard (DES) [6] . DES
is a block cipher, operating on 64-bit blocks.

The standard mode of encryption under DES is called Electronic Code Book (ECB).
ECB mode is not used by Kerberos because it has deficiencies when applied to successive

‘Formerly the Sa t io~ia i Bureau of Standards

37

blocks of data. When block-aligned repetitive data are encrypted using ECB, they can be
recognized as identical ciphertext blocks (e.g. an array of zeros larger than several blocks
will show up as a set of identical ciphertext blocks). While this does not directly reveal
the encrypted data, it does put them a t greater risk to discovery through cryptographic
analysis.

FPS 81 171 defines the Cipher Block Chaining (CBC) mode of DES to alleviate this
problem. The ciphertext of the previous block is bitwise exclusivdy or’ed (XOR’ed) with the
cleartext before encryption, so that block-aligned data are masked (see Figure 1). For the
f i s t block, the encryption key is used as the Initialization Vector (Tv), which is treated as
the previous ciphertext block and XOR’ed into the f i s t block before encryption. However,
CBC does not provide any integrity assurance (which Xerberos desires). If a ciphertext
block is modified, the error induced after decryption spans only the block modified and the
following block. An integrity check can be added by computing a checksum on the cleartext
before encryption, and encrypting it as part of the cleartext.

But the Kerberos designers wanted to do the encryption and integrity check in a single
pass. A first pass to compute a checksum followed by a separate pass to perform the
encryption was deemed too expensive for performance reasons [3]. Their design criteria
specifically did not expect hardware DES encryption assist, and so they rely on software
implementations of the encryption algorithms [4]. As as result, they were not constrained
to the officially defined standard modes of operation (which they would have been limited
to, had they assumed hardware assist). So they devised what they called “Plaintext Cipher
Block Chaining” mode (PCBC) in which the cleartext of the previous block as well as the
ciphertext of the previous block are XOR’ed into the current block before encryption (see
Figure 2). The result of PCBC is that errors in the decrypted cleartext would propagate
themselves to all successive blocks of the cleartext. This property allowed the use of PCBC
without a separate integrity check (the encrypted messages contained enough predictable
contents at the end of the cleartex to make detection of a modified block highly likely).

However, PCBC has a different deficiency: swapping two ciphertext blocks will foul the
cleartext of the corresponding blocks (and all blocks between) upon decryption, but due to
the nature of the XOR method with the cleartext and ciphertexts, the errors cancel out,
and succeeding blocks are properly decrypted. So if the integrity checks look a t the last few
blocks to verify message integrity (as the current implementation does), the checks c a n be
fooled into accepting a partially garbled message.

4.2 Cryptographic checksums

In addition to the use of encryption to seal and protect messages, a quadratic checksum
algorithm is available in an optional application protocol to achieve a lower-cost assurance
of integrity (without assurance of privacy). The algorithm is modified from Jueneman 121
(The modifications have not been analyzed with respect to cryptographic security.). The
checksum is computed with the session key used as a seed. However, in the current protocol
the checksumis not encryTted when transmitted, leaving the session key exposed to possible
attack by inversion of the algorithm. If the checksum were encrypted, an attacker would
have to discover the session key through cryptanalysis on the seeded checksum.

39

Figure 2: The Plaintext Cipher Block Chaining (PCBC) mode of DES (non-standard)
I CLEARTEXT I
.
I I

I
I

I
I
I
I
I
I
I
I

CIPHERTEXT

I
I
I
I
I
I

I
I
I
I
I
I

40

4.3 Cryptanalysis

The Kerberos protocols and their current implementation were designed with the assump-
tion that the cryptosystem was secure. Very little analysis of cryptographic attacks was
performed.

4.4 Application protocols

4.4.1 Authent ica t ion Service

In order to obtain a Ticket to present to a service, the client sends a cleartext message to the
KDC, containing its name, instance, and realm, the client host’s time of day, a requested
lifetime for the Ticket, and the service name and instance for the desired Ticket.

The KDC retrieves the records for both the client and server, constructs a Ticket and
associated credentials information, encrypts the Ticket under the server’s key, encrypts the
credentials and encrypted Ticket under the client’s key, and returns the encrypted data
along with some cleartext control information to the client.

The Ticket contains the client’s name, the client’s host’s network address, a session key,
a lifetime, the time a t which the Ticket was issued, and the server’s name, instance, and
realm.

The credentials information contains a copy of the session key contained in the Ticket,
the server’s name, instance, and realm, the lifetime of the Ticket, the key version number
of the server’s private key used to create the Ticket, the length of the Ticket, the Ticket
itself, and the KDC’s time of day.

It should be noted that the Ticket itself need not be encrypted along with the rest of the
credentials in the response. The Ticket is usually passed over the network from the client
to the server, and since the Ticket is encrypted in a secret key, the session key contained
therein is safe from release.

4.4.2 Client to Server

After obtaining a Ticket and associated Credentials, the client constructs an Authenticator
(which contains the client’s name, host network address, and timestamp, to be used as anti-
replay information, all encrypted in the session key) and sends the Ticket, Authenticator,
and (possibly) other application-protocol information to the application server.

The server decrypts and verifies the Ticket using its private key. If successfully verified,
it uses the enclosed session key to decrypt the Authenticator and verifies the anti-replay
information.

This achieves authentication of the client to the server; if the client requires the server
to authenticate in return, the server can use the session key to generate a reply proving that
it has access to the session key. This serves to authenticate the server to the client, since
we assume only the correct server knows the private key and could decrypt the Ticket and
obtain the session key.

4.4.3 Ticket-Grant ing Service

There is a special service provided on the KDC which acts Like most Kerberos-mediated
services, but has access to the KDC database. This service, dubbed the “Ticket-granting
service” (TGS) can issue new Tickets without requiring the client to have its private key

41

available (which typically would require a client workstation to store or repeatedly request
the user’s password).

When a user logs in, the workstation software requests a Ticket for this TGS, using
the normal Authentication Service protocol. The user types his password (during the login
process), arid it is used to decrypt the response. The Ticket and associated Credentials are
cached on the workstation. The lifetime of this Ticket is usually short (about 8 hours at
MIT Project Athena), so that the exposure of leaving the Ticket arid session key stored
on the workstation and subject to theft and malicious or unauthorized use is Limited to a
short time span. If the user’s password were stored, a thief could impersonate the user for
a potentially much longer time (until the user changed his password).

When Tickets are required for additional service, the client workstationuses the standard
client-to-server protocol to send its TGS ticket and an Authenticator, along with a d i e d
timestamp, requested lifetime, and the name of the service for which tickets are needed to
the TGS. The TGS uses its private key (which it can fetch from the database) to decrypt
the ticket, verify the Authenticator, and fulfiU the request by constructing a new Ticket
and associated Credentials. As in the Authentication Service protocol, the Credentials and
ticket are encrypted (but in the session key from the TGS ticket, rather than the dient’s
private key) and returned to the client, which then decrypts and caches the Ticket and
Credent ids.

4.4.4 Integrity-protected messages

The “KRB-SAFE” protocol message is used when a client and server want to verify the
integrity of a message without requiring privacy or degrading performance by utilizing
encryption.

The message contains user data, some control information, the sender’s network address,
and the sender’s host’s time of day, dong with a quadratic “cryptographic” checksum
(described above) of the entire message seeded with the shared session key. A n incorrect
checksum (as verified by the receiver) or incorrect control information indicates a modified
or unauthentic message.

4.4.5 Privacy-protected messages

The “KRB-PR”’ protocol message is used when a client and server waqt to verify the
integrity and protect the privacy of a message.

The message contains user data, some control information, the sender’s network address,
and the sender’s host’s time of day, encrypted (using PCBC mode of DES) under the
session key. Upon decryption, a garbled message or incorrect control information indicates
a modified or unauthentic message.

5 Planned version 5 changes

Project Athena plans to be able to support different encryption types in the version 5
protocol messages. We expect to implement only a DES-based version. We hope that other
implementors will provide different encryption types.

Due to the above discussed problems with PCBC, we have decided to use the CBC mode
of DES combined with a data checksum to provide integrity and privacy. The choice of a

42

checksum algorithm to use is still under discussion; we are seeking an algorithm that won’t
negatively interact with DES.

We also are seeking a better cryptographic checksum than the quadratic checksum
(which doesn’t have much analytical proof). The DES CBC checksum mode has better-
studied properties, but is computationally much more expensive than the quadratic check-
sum. We would ideally like a computationally “cheapn checksum which is also reasonably
secure.

We expect to fix the “KRB-SAFE” protocol by allowing user selection of a cryptographic
checksum algorithm.

6 Conclusion

This paper has discussed the encryption used in the Kerberos protocol and the rationale
and design decisions underlying some of the uses of encryption. It has noted deficiencies in
the current implementation and protocols, and suggests changes to alleviate those problems
in the next version of the protocol.

Kerberos has succeeded in its goal of using software encryption by limiting the amount
data required to be encrypted for the base authentication protocols, and allows applications
to choose appropriate levels of cryptographic integrity and privacy.

7 Acknowledgments

The author would like to thank Jon Rochlis and Steve Miller for their comments on drafts
of this paper.

References

[l] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in Key Distribution
Protocols. Communications of the A CM, 24(8):533-536, August 1981.

[2] R. R. Jueneman et al. Message Authentication. IEEE Communications, 23(9):29-40,
September 1985.

[3] Steven P. Miller. Private communication.

[4] Steven P. Miuer, B. Clifford Neuman, Jeffrey I. Schiller, and Jerome H. Saltzer. Section
E.2.1: Kerberos Authentication and Authorization System. Project Athena Technical
PEan, December 1987.

[5] Roger M. Needham and M. D. Schroeder. Using Encryption for Authentication in
Large Networks of Computers. Communications of the ACM, 21(12):993-999, Dec 78.

[6] National Bureau of Standards. Data Encryption Standard. Federal In fomat ion Pro-
cessing Standards Publication, 46, 1977.

[7] National Bureau of Standards. DES Modes of Operation. Federal Information Pro-
cessing Standards Publication, 81, 1980.

43

[8] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Srhiller. Kerberos: An Au-
thentication Service for Open Network Systems. Useniz Conference Proceedings, pages
183-190, February 1988.

[9] Victor L. Voydock and Stephen T. Kent. Security mechanisms in high-level network
protocols. Computing Surveys, 15(2):135-171, June 1983.

[lo] R.. W. Watson. Timer-Based Mechanisms in Reliable Transport Protocol Connection
Management. Computer Networks, 5, 1981.

	The use of Encryption in Kerberos for Network Authentication
	Introduction
	Terminology
	Kerberos overview
	Version 4 Protocol
	Encryption
	Cryptographic checksums
	Cryptanalysis
	Application protocols
	Authentication Service
	Client to Server
	Ticket-Granting Service
	Integrity-protected messages
	Privacy-protected messages

	Planned version 5 changes
	Conclusion
	Acknowledgments
	References

