
Practical Problems with a Cryptographic Protection
Scheme

Jonathan M. Smith

Distributed Systems Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

ABSTRACT

Z is a software system &signed to provi& media-transparent net-
work services on a collection of UNIX@ machines. These services are
comprised of file transfer and command execution; Z preserves jibe own-
ership on remate transfer, and more significantly, owner and group iden-
tity when executing commands remotely. In or&r to secure known vulner-
abilities in the system, enhancements were made. In particular, a
cryptographically-den’ved checksum was added to the messages. After the
initial implementation of the chechzunming scheme, several iterations of
performance improvement occurred. The result was unsatisfactory to the
user community, so the checksum was removed. Instead, vulnerabilities
were reduced by improved monitoring and maintenance procedures.

1. Introduction

1.1. History

Z was initially implemented circa 1978 in order to cope with an ever-increasing number
of UNIX systems at a large industrial computation center. The environment was becom-
ing unmanageable; unmanageable in the sense that it was difficult to administer the sys-

tems in a controlkxl and consistent manner. It was clear that some mechanism which
allowed a user to operate in a true multi-system environment was necessary. However,

there was no consistent network organization. There were a variety of subnetworks of
various reliabilities and bandwidths, these included bus-to-bus, channel-to-channel, and

synchronous remote job entry tRIP> links. RJE served as a fully-connected network
(albeit a slow one) as ail systems were connected to some mainframe system for various

services, e.g., bulk printing. The Network Systems Corporation HYPERChannel?M bus
is a very high speed (circa SOMbits/sec) device that allows machines to be intemon-

netted in a local area network. In late 198 1, an NSC HYPERchannel began to connect

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 64-73, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

65

all the systems, and due to its bandwidth, became the primary media for 2 communica-
tion. 2 provided an easy to use and uniform interface to the network; the physical media
used in the transport is transparent to the user. Use of the media was optimized by a
statically-calculated bandwidth-weighted best-path selection scheme coupled with
dynamicallycalculated reliability data.

1.2. Architecture

Z is viewed by a large segment of its user population as a UNM command with which
they accomplish various tasks across several computing systems. In actuality, 2 is a
large collection of both loosely and tightly coupled cooperating software modules, distri-
buted across all machines on the network. The command invocation is the first link in a
long chain of events.

The 2 command line syntax specifies file transfer or remote execution. The stan-
dard input of the local Z execution can be used to provide input for the remote command.
The Z semantics preserve user ids on the remote system, both for file permissions and
command execution. One or more systems can be specified as destinations, and aliasing
is available for compact naming of subsets of the available systems.

command I 4-

c A
remote

network network
service service

Figure 1: Z Architecture

The Z system provides facilities for examining queued jobs, retrying jobs when
failures occur, removing corrupted files, notifying senders upon error or job completion,

66

and secondary routing on link failure. Various internal machine-to-machine interfaces
were devised to mask incompatibilities between heterogeneous processor families.

The basic architecture of the system is illustrated in figure 1.

1.2.1. Local Actions

The Z command serves as a gateway to the lower level transport layers of the system. It
“packetizes” the data to be transported, storing such information as can only be gathered
at invocation time, such as the current directory and identity of the invoking user. k a
ffle name was given as an argument, Z ensures that the fde is accessible, and saves other
information, such as the file’s ownership, the access permissions, and the file size in
characters, Also on the command line can be a list of one or more destination systems;
some validity checking is done on these names. Z can also take a command string as an
argument.

Based on the arguments and the identity information, Z builds a header, which is
used by other modules. Any data to be transmitted is then appended to the header. The
bound data “packet” is passed to a “gatekeeping” module, Zqer. Zqer is invoked as the
last action of the 2 command with the exec() system call. It takes the formed data packet
and enqueues it in a known spool directory, where the msport control module, Zdemon,
will find it when woken by a signal from Zqer. Zqer contains knowledge of a spooling
directory, spooling and sequencing protocols, and interprocess communication pro-
cedures. Since these actions are required both by local invocations of 2 and by the
remote receiving node, good software engineering suggested a common module.

Zdemon is a prwess which constantly waits for an event to occur: this event is the
signal that Zqer sends to it, alerting it to the fact that there is work to do. When there are
no files to process in its spool directory, it remains in an idle state, waiting on an
“event”, the “signal” sent to it by the Zqer process. When Zdemon receives this sig-
nal, it scans the known spool directory, looking for the work which should have just
appeared. When started by a command line, or when woken by an alarm signal or a sig-
nal from Zqer, Zdemon searches the well-known directory where invocations of Zqer
have placed the packetized data.

Zdemon examines the header information of the enqueued packet to determine its
next action. If the packet is to be processed locally, a ZxmitO is spawned. The ZxmitO
carries out the local action; it is given the file as a parameter, and determines how to pro-
cess it from the enqueued header.

If the packet is to be passed on to another node, the Zdemon selects a transmission
medium. A transmission route to the destination system is selected, and based on this
route, some lower level transport mechanism is used by fork() -ing a Zxmit subprocess
Of the appropriate flavor. The Zxmit job manages the details of transporting the packet
to the remote system and ensures its correct receipt. It uses the underlying transport
mechanism both to actually transmit the data and to perform certain actions at the desti-
nation. Among these actions is the execution of a copy of the program Zrecv.

67

1.2.2. Remote Actions

All of the transport mechanisms which the Z system uses provide at least a minimal form
of remote command execution. When a Z job arrives at a destination UMX machine, it
generates a Zrecv process. Zrecv executes Zqer to let Zdemon know that there is work
to be done. Since this is now a “local” job, Zdemon executes ZxmitO to carry out the
specified action. Effectively, Zrecv serves as a “friend” to the traveling process: it
appears as if Zrecv is a local-to-local invocation of Z, requested on behalf of the remote
(sending) machine. This design is modular and elegant; job-handling is correct with
respect to local or remote destinations, while being ignorant, for the most part, of the
details.

The details of nansmission are handled by Zxmit modules, which prepare a mes-
sage for transmission over their respective media, and proceed to carry out the transmis-
sion. All of these modules must provide some mechanism for invoking the Zrecv
module on the remote system once the data/ command packet has arrived.

These modules are perhaps the lowest “layer” of the Z architecture, since unlike
the others, they have to concern themselves with details of the communications link, such
as file size limitations. In most cases, the Zmit modules merely invoke commands which
are provided as part of a link’s operational subsystem. If the WE medium is used,
intermediary, non-UNM system ”hops“ may have to be made.

So that Z can maintain user id’s across systems, several modules must possess
super-user (unlimited file access) privileges. While passive interception is potentially
dangerous, as it provides information, we were rather more concerned with active inter-
lopers; those who intend to modify data and/or commands.

1.3. Security Problems

In 1983, we became concerned about the security of 2, and immediately recognized
several potential vulnerabilities. These stemmed from several architectural features, as
can be gleaned from figure 1. The fact that the system preserves user identity is the
major reason for a security threat. First, the ability to execute commands remotely
means that a breakin on one system can be extended to others. Second, the complete
interconnectivity provided by Z meant that a breakin on one system could be extended to
all of the machines. If a Z packet could be modified enroute to its destination, then the
user id or any message contents could be set to interesting values. Thus, the points of
vulnerability [8] were those which had the potential for message alteration.

First, the spool had to be kept secure, or otherwise files with arbitrary contents
could be written. Second, the local network services had to be kept secure. This was
more of a problem than it appeared; these systems often spooled jobs internally, and their
access-control strategies were not easy to change. To verify the claims we made about
the lack of security inherent in the system, we obtained root permissions from an ordi-
nary account. This was done through altering a file spooled by the RJE mechanism. The
file resided in the CTMX spool for about 0.5 second, and was enciphered with a simple
modification of a Caesar scheme. Unfortunately, the software preserved user ownership

68

of the spooled file, so that a user could modify the file. This was necessary due to the
design of the WE software. Breaking the cipher was mvial, and by repeatedly sending
messages and polling, a file was captured, modified, and transmitted to its (unsuspect-
ing!) destination. Simply protecting this spool directory and modifying the RJE software
was insufficient; the RJE jobs were spooled on the mainframe as well, where we could
not guarantee security.

2. A Server-based solution

After studying the problem, we came to some conclusions:
1,

2.

While administrative control was not completely ours (as was the case with inter-
mediate mainframe systems) the system was at risk.
We were far less interested in protecting against traffic analysis than in protecting
against modification.
Sending enciphered messages was undesirable for several reasons, including (1)
recovery from errors, (2) use of intermediate nodes needing source and destination
data, and (3) system status reporting.

4. In addition, requirements were that the user interface could not change, e.g., by
requesting a password.

After examining the literature on data security [2, 51 we decided that the right approach
was to use a cryptographic checksum in order to detect data modification. The checksum
is computed by encrypting the data and then computing a checksum from the encrypted
text. Thus, the messages could be sent in cleartext, with a checksum prepended to the
header. Modifications could be detected, and modified messages discarded. The
improved error-detection was a byproduct. Since changes to either the header (uids) or
the message (binaries for system programs) were dangerous, the entire packet had to be
involved in the checksum. The initial implementation used a 32-bit checksum.

A variety of encipherment schemes were examined, and experimental implementa-
tions were done to evaluate the performance of the schemes. Even after implementation
in assembly language, a cryptosystem using large primes consumed unacceptable
amounts of CPU time, even for very short strings. DES [4, 51 was examined, but once
again the throughput of the implementation was insufficient. While it is clear that DES
is intended to be implemented in hardware, the chips available at the time were expen-
sive and slow. In addition, we had three architectures to contend with, and kernel
changes would have been necessary. We sped up the Urn library implementation of
DES by a factor of 3 using hand-optimized code and small assembly-language routines.
Recent research [l] indicates that speedups up to a factor of 20 or more can be accom-
plished by applying some mathematical sophistication in the software implementation.
Our speedup reduced the CPU time required for encrypting a one megabyte file from
about 2340 seconds on an AT&T 3B20Sm (the 3B20S is roughly comparable to a DEC
VAXm 111’780) to about 830 seconds. Execution of a simple command which counts the
characters in a file requires about 5 seconds of CPU time, so the contribution of file read-
ing code is low. Considerable computation was necessary to convert byte-oriented files

3.

69

network
service

to bitstreams of one bit per character. Use of techniques such as cipher-block chaining
would slow an implementation down further.

Bishop’s factor of 20 speedup should reduce this time to about 120 seconds of CPU
time. Unfortunately, Z was often used for transfer of files which were up to a megabyte
in size, and response times (comprised of CPU times and delays caused by scheduling,
processor sharing, and YO) measured in minutes were unacceptable. We finally decided
that a modification of the UNIX crypr command would be the best solution. Even though
crypt has recently been shown to be insecure, the rotor ciphers, once set up, allow
extremely rapid encipherment to take place. While our work preceded Reeds and
Weinberger’s [7], we Seem to have anticipated some of the elements of their approach;
we-varied the rotor-shifting steps in a password- dependent way in order to frustrate
analysis of blocks of text for which one of the rotors remains fixed.

Since we were convinced that encryption technology would improve, we wanted to
add the encipherment to the system in such a way that new solutions, e.g., DES chips,
could be incorporated easily.

- network
service transfer’

2.1. Encryption Server

The change in the architecture is illustrated in figure 2.

data

Figure 2: Z Architecture with checksum server

The server was passed a filename argument using a secure FIFO queue. The filename

70

was for the packet which Z had just gathered. Insertion in the queue by a process woke
the server, which enciphered the file, computed the checksum, and passed back the result
to the calling process. The passwords were per-system, stored in a secure file, which the
server checked frequently for modification. The passwords were encrypted using DES
[a, and served as seeds to the rotor generation for the Enigma-clone. If the file hadn’t
changed, the encryption was cached, for performance reasons. It’s clear that a public-key
system would have been more effective for this task, but the available systems perfonned
too poorly.

The idea of the server architecture was to emulate the semantics of a remote pro-
cedure call. In this way, the server process could be transparently replaced by another
server process with the same functionality which used hardware encryption or other
tricks to get better response times.

2.2. Problems

The basic design of the server was well thought out, and in another systems environment,
may sall be the right way to go, because the advantages in terms of software engineering
are manifold, e.g. modularity, information-hiding, et cetera. Unfortunately, encryption is
a CPU-intensive activity; hence, the UNIX system scheduler assigns the server process
lower and lower priority as time goes on, and it becomes “slower” with respect to
response time. Improved scheduling technology could remedy this problem, but it was
neither available nor administratively desirable, except for our application’s use.

Since the process (Z) waiting for a reply (the checksum) cannot assume that the
server is up, it can time out on the write to the server’s request queue, using the ulunnO
facility. While it can retry, if the server is sufficiently slow the request may not be ser-
viced “in time”. If this occurs, the packetizing software will assume server failure and
therefore fail to packetize the request. On the other hand, if timeouts are not facilitated,
the software may appear to be so slow that users will find alternate means of data tran-
sport. For large files and a busy server, the response times were measured in minutes.

In addition, the server proved to be an administrative nightmare: it was hard to
understand without a great deal of expertise in encipherment, systems programming, and
network software; it created “mysterious” files when it wasn’t keeping up with the
request queueing rate; and it was dependent on the sanity of several files. Consequently,
a re-design was done which preserved most of the positive features of the server design,
while improving response time and reducing administrative effort.

3. Re-design, no server

The major goal of the redesign effort was (initially) to increase the reliability of the
server process, and hence reduce the administrative effort. After a painstaking analysis
of the alternatives, it was decided that the server module should be removed and the
encryption services be provided by in-line code rather than interprocess communication.
While on the one hand, the burden of performing a DES encryption on the cleartext pass-
word could not be shared between users of a server, the following were m e :

71

A small data nansfer would not be penalized in real-time response for following a
large data transfer in the request queue. (The large transfer would cause an external
server to accumulate a large amount of CPU time, thus penalizing it in the schedul-
ing discipline.)
The DES encryption is not necessary, provided that any cleartext password is
encrypted before being put into a secured file.
Per system passwords were eliminated, as this proved to be of little use in practice.
One password is used for all systems on a Z network; eliminating a system would
then require changing the password on all machines except the one to be cut off.
While re-engineered to be robust, the interprocess communication was complex,
and slow in response time. Putting the code in-line permitted several optimizations,
which led to significant performance improvements, a factor of 3 to 5.

The necessary code to perform checksumming and encrypting of file contents was moved
inline. The Pack() and UnPacQ) calls were designed so that callers would be ignorant
of their methodology; this proved to be me in practice, as not one line of the calling
modules had to be re-coded to reflect the fact that the server had been eliminated. The
interprocess communication code was eliminated and the Checksum() call made directly.
The encryption algorithm was modified to remove a reflecting rotor from the encipher-
ment process, thus removing a memory access and two arithmetic operations from the
process of encrypting a byte. This was done without reducing the cryptographic strength
of the algorithm, as the reflecting rotor mainly aids decipherment. The checksumming
routine was also re-coded for greater efficiency; the net result was that Z required about
20 seconds of CPU time to queue a 1 megabyte file on an AT&T 3B-20s. A command
line (no file access) requires a little more than a second of CPU on the same machine.
The additional CPU overhead in each invocation is therefore directly proportional to the
resource utilization of the request: this seemed fair. Unfortunately, much 2 use is admin-
istrative, and a traffic analysis showed that the average packet size was about lOOK
bytes, implying about 2 seconds of response time penalty for using encryption. We felt
that this was acceptable, but extensive testing with the user community raised vocal com-
plaints. Thinking these spurious, we surveyed the user community, and concluded that
the encryption feature, weakened as it was through:
1.
2.
3.
was no longer viable.

Lack of public key technology,
Use of a cipher system known to be breakable, and
Increasing dependence on protected files,

4. Conclusions

There were several benefits which accrued from our work. The rewriting of the software
resulted in a more robust, readable, and elegant system. Various dangling pointer errors
were corrected, and buffer size checks were added; this serves to remove other obscure
security problems. The desire for end-to-end encryption, or something close, led to a

72

complete, and better redesign for the packet header; it was re-encoded entirely in ASCII.
This resulted in better portability in a heterogeneous machine environment. The calls to
the encryption routines were commented out of the source code, a total of 4 lines of
“C”; no other mcdifications were necessary. Several utility programs had either been
inappropriately placed in the directory hierarchy or gave inappropriate levels of privilege
to users. These were changed.

Administrative rigor was applied to reduce the security threat. Vulnerable direc-
tories were checked carefully for permissions; they are now monitored on a regular basis.
As newer networking technologies are phased in, the old methods, such as RJE, which
used potentially unsafe intermediaxy nodes, are being phased out. Careful administration
is used [3] at present to prevent surprises.

Our application points out some of the serious problems with applying crypto-
graphic technology in practice. First, while a cryptographic checksum is the obvious
solution, it was clearly an afterthought, and had to be added to an existing architecture.
Second, the uses of the system can put severe performance constraints on an otherwise
workable system. Our problem was the relatively frequent transfer of large data files, and
the demands of timesharing users for good response times. We med to cure this by
weakening the cryptographic checksum scheme, but the results were unacceptable, so
security is maintained primarily by administrative vigilance.

However, when the networking technologies such as Ethernetm are broadcast
media, “promiscuous-listeners”, and more seriously, “modifiers”, start to resurface as
an issue. Thus, the increased computational cost of creating a system with a higher cryp-
tographic “work factor” begins to seem more reasonable. The economics of
cost/performance might justify special-purpose hardware, e.g., for DES encipherment.
The tradeoffs benveen security and response-time should be examined carefully, and fie-
quently.

In particular, a useful and productive area of research would be one which resulted
in a set of curves which related cryptographic strength to some useful performance
metric. One such metric, alluded to in this paper, is the number of arithmetic operations
required per byte of a large file. The analysis represented by the performance curve
allows a system designer to compare systems and select an appropriate system for the
application. Without such analysis, most cryptographic work is likely to remain of
interest mainly to mathematicians; practical work requires getting the details right

5. Notes

(33 UNIX is a Regmered Trademark of AT&T Bell Laboratories.
3B20 is a trademark of AT&T.
VAX is a t r a d e m k of Digital Equipment Corporation.
HYPERChannel is a trademark of Network Systems Corporation.
Ethernet is a trademark of Xerox Corporation,

73

6. References

[l] Matt Bishop, “An Application of a Fast Data Encryption Standard Implementation,”

[2] D.R. Denning, Cryptography and Data Secwiry, Addison-Wesley (1982).
[3] F. T. Grampp and R H. Moms, “UNM Operating System Security,” AT&T Bell
Laboratories Technical Journal 63(8, Part 2), pp. 1649-1672 (October 1984).

[4] A. G. Konheim, Cryptography: A Primer, Wiley-Interscience, New York (1981).
[q C. Meyer and S. Matyas, Cryptography: A New Dimension in Computer Data Secu-
rity, Wiley-Interscience (1982).
[q R. Moms and K. Thompson, “UNIX Password Security,” Communications of the
ACM 22, pp. 594-597 (November 1979).

[7] J. A. Reeds and P. J. Weinberger, “File Security and the UNIX System Crypt com-
mand,” AT&T Bell Laboratories Technical Journal 63(8, Part 2), pp. 1673-1684
(October 1984).

[8] D. M. Ritchie, “On the Security of UNM,” in UNlX Programmer’s Manual, Section
2 (1983). AT&T Bell Laboratories

Computing Systems 1(3), pp. 221-254 (1988).

	Practical Problems with a Cryptographic Protection Scheme
	Introduction
	History
	Architecture
	Local Actions
	Remote Actions

	Security Problems

	A Server-based solution
	Encryption Server
	Problems

	Re-design, no server
	Conclusions
	Notes
	References

