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1. Introduction 

Random binary sequences are required in many applications of modern communi- 
cation systems and in designing reliable circuits. However, truly random sequences are 
often associated with extremely high costs, and are therefore infeasible to use. Deter- 
ministically generated sequences that pass certain statistical tests suggested by random 
sequences are often used instead and are referred to as pseudorandom sequences. In 
applications involving, for instance, secure or spread spectrum communications, it is 
essential that these pseudorandom sequences be unpredictable. This paper addresses 
the problem of predicting the terms of a pseudorandom sequence from some initial por- 
tion of the sequence. A good introduction to the issues involved in this area can be 
found in [7]. 

Sequences that are generated deterministically by a finite-state machine must ul- 
timately be periodic, and as such, can be generated by a simple feedback shift register 
(FSR) whose length is long enough to contain the terms of the sequence up to the 
point where they start to repeat. This pure cycling FSR has a single tap at the point 
corresponding to the initial point of the periodic part of the sequence, which will be 
the first stage of the shift register only if there is no initial acyclic part. 

If the period is extremely long, this pure cycling FSR is impractical, but there 
will usually be much shorter FSRs that can be used to generate the sequence. These 
shorter FSRs wiIl have more general feedback functions, Boolean functions defined on 
the states of the register. The length of a shortest FSR that generates the sequence 
is called the span of the sequence. Determining the span and an associated Boolean 
feedback function is difficult because of the nonlinearities involved. 

Because of its tractability, most attention has been focused on determining the 
linear span of a sequen&--the length of the shortest linear FSR that generates the 
sequence. If the linear span of a sequence is small, then the feedback function that de- 
fines the linear FSR can be determined easily using the Berlekamp-Massey algorithm [6]. 

Once the feedback function is determined, the remainder of the sequence can be easily 
generated. 

A sequence with very large linear span may be generated by a much shorter FSR if 
nonlinear terms are allowed in the feedback function. The case of additional quadratic 
terms sjsi+j is considered in this paper, since it is the most computationally tractable 
nonlinear case. The quadratic span of a periodic sequence is defined to be the length 
of the shortest length quadratic FSR that generates the sequence. For example, the 
periodic sequence s = 00010110101111000101101.. of period 15 has linear span 14, 
but this sequence is generated by a quadratic FSR of length 4, and in this case, the 
span and the quadratic span both equal 4. 
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The complexity of binary sequences formed using nonlinear functions has been 
studied previously in [3], [5], [7], and [8]. These authors have considered sequences 
obtained by applying nonlinear feedforward functions to the contents of one or more 
linear FSR's. Their results concern only the linear spans of these nonlinear feedforward 
sequences. The quadratic spans of this class of sequences have not been analyzed. 

The quadratic span of a sequence can be determined by solving certain structured 
systems of linear equations. Determining the linear span of a sequence also involves solv- 
ing certain structured systems of linear equations. The Berlekamp-Massey algorithm 
reduces the complexity of solving the systems involved in the linear case. Updating pro- 
cedures similar to those used in the Berlekamp-Massey algorithm can only sometimes 
be applied to the quadratic case. We present an algorithm based on Gaussian elimina- 
tion for calculating the quadratic span. It is still an open problem whether the special 
structure of the matrix in the quadratic case can be used to decrease the complexity of 
this algorithm. We do present a useful result concerning the increase in the quadratic 
span when an existing linear FSR fails to generate a particular term in a sequence. This 
is a partial generalization to the quadratic case of theorem 1 of [S]. 

In addition to obtaining a more efficient algorithm, another important result would 
be to assess further the predictability of a particular class of sequences by determining 
their quadratic spans. In this paper, we focus on de Bruijn sequences. The de Bruijn 
sequences of span n are the sequences of maximum period 2" generated by nonlinear 
FSR's of length n. There have been a number of new algorithms proposed for generating 
large numbers of de Bruijn sequences of span n. The problem of determining the 
quadratic spans of de Bruijn sequences of span n was introduced in [2]. The linear span 
of a de Bruijn sequence of span n is greater than half of its period [I}, and it has been 
observed empirically (through n = 6) that the vast majority of de Bruijn sequences 
have linear spans nearly equal to the upper bound of one less than the period. 

For the case of quadratic spans of de Bruijn sequences, the situation appears to 
be quite different. In this paper, we determine a new upper bound on the quadratic 
span of de Bruijn sequences of span n. We show that the quadratic spans of de Bruijn 
sequences of span n are bounded above by 2" - 1 - (:), and show that this bound is 
achieved by de Bruijn sequences obtained from adding the 0 state to maximum-period 
linear sequences of period 2" - 1. It is easy to see that a lower bound for this case is 
n + 1, but we conjecture that a lower bound for n > 3 is in fact n + 2. 

The distributions of quadratic spans for the de Bruijn sequences through span 6 
are calculated by computer, correcting and extending the results of [2]. The situation 
for n = 6 is displayed graphically in figure 1, where the linear span distribution may 
be seen to be concentrated near the linear span upper bound of 6 3 ,  while the quadratic 
span distribution is concentrated around 11. The problem of determining the quadratic 
span distribution of de Bruijn sequences remains open. 
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Quadratic Span Linear Span 

Figure 1. Linear and Quadratic Span Distribution for 
de Bruijn Sequences of Span 6 

2. Definitions and Main Results 

In this section, we state without proof the main results of this paper. We first give 
the necessary definitions. All the sequences we consider have terms in GF(2). Most of 
the equations and expressions discussed will be over GF(2) unless otherwise stated. 

An n-stage FSR with feedback function f :  GF(2)" + GF(2) generates a sequence 
s = ( S O , S I , .  . . ,s;, . . -) where so,s1,. . . , sn-1 corresponds to the initial loading and 

Si+n = f ( s i ,  si+1,. . ., Si+n- l ) ,  i 2 0 (1) 

The function f in (1) is linear if there exist ao, al, . . . , an-l in GF(2) such that for 
all ( z o , ~ ,  . . . , z ~ - I )  E GF(2)n, 

n-1 
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The function f is quadratic if there exists U j , k ,  0 5 j I k 5 n - 1 in GF(2) such 
that for all ( z o , ~ , .  . . , ~ ~ - 1 )  E GF(2)n, 

n-1 n-I 

Note that z j z j  = zj in GF(2); for simplicity we sometimes denote a j , j  by aj.  
Note this definition implies that f (0)  = 0. A more general quadratic feedback function 
could include a constant term. As in [2], we consider the case of no constant term. 
The generalized results for the constant term case will be reported in the full paper. 
Higher-order feedback functions are defined in a similar fashion. 

A sequence generated by an n-stage FSR, but not an (n - 1)-stage FSR, is said 
to have span n. Linear span and quadratic span are defined similarly for FSR's with 
linear and quadratic feedback functions. The span, quadratic span, and linear span of 
a sequence s will be denoted respectively by sp(s ) ,  q ( s ) ,  and Z(s). By definition, 

S P ( S )  I q ( s )  I w. 
The above notions of span apply to finite sequences a well. Given a sequence 

s = (so, s1,. . . , s i ,  . . .), we denote any finite subsequence of length N starting at s; by 
s y ,  that is, 

SN = (sit ~ i + l , .  . . , s;+N-l). 

We write sN for sf. A FSR generates sN if (1) is satisfied for 0 I i 5 N - n - 1, 
i.e. if the t e r m  through s ~ - 1  can be successfully generated. Note that any FSR with 
N or more stages generates s N ,  since the entire sequence can be loaded in the N initid 
stages of the register. 

Let E denote the sequence shift operator; that is, Es denotes the sequence with 
the i-th term ( E s ) ~  = s;+l. We define (Ej  o E k ) s  to be the sequence with i-th term 
given by s , + , s , + k .  For a quadratic feedback function (2),  equation (1) can be expressed 
in terms of the shift operator as 

n-1 n-1 

(En + 2 a,,kEj o E k ) s  = 0. 

To compute a quadratic feedback function (2) of an n-stage FSR from a g;ven 
sequence of N terms, a system of linear equations in the unknowns U,,k ,  0 5 j I k I 
n - 1, can be formed: 
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If (3) has a solution, then q ( s N )  5 n; otherwise q ( s N )  > n. 

We define the matrix M ( N ,  n) as the coefficient matrix associated with the system 
of linear equations in (3). This matrix has N - n rows and n(n + 1)/2 columns indexed 
by the variables aj,.c. Actually, the column associated with Uj ,k  is given by ( ( E j  0 
E')s)~-". We use a particular ordering of the variables'aj,k that simplifies the notation 
when the number of stages n is increased. For example, when N = 8 and n = 3, we 
write (3) as 

Our analysis of quadratic spans involves examining the properties of M ( N , n ) ,  
including its rank. A similar point of view for the linear span case can be found in (41. 

Given a sequence s, if an FSR generates s N ,  but does not generate sN+l ,  then we 
say a discrepancy occurs at S N .  The first proposition states when the occurrence of a 
discrepancy results in an increase in the quadratic span. It uses standard results from 
linear algebra and forms the basis of an algorithm, which uses Gaussian elimination to 
solve the system (3), for computing the quadratic span. 

PROPOSITION 1. If a quadratic FSR of length n generates sN but not sN+l,  then 
no quadratic F S R  of length n generates sN+l if and only if rank(M(N + 1,n)) = 
rank(M(N, 4). 

An important issue is predicting the increment in the quadratic span when propo- 
sition 1 implies there has to be some increase. In the case of linear span, this increment 
is determined by theorem 1 of [6]. The precise increment for the quadratic case is an 
open question. However, the increment can be determined in terms of the rank of the 
matrix M ( N ,  L )  if the quadratic FSR that generates sN is in fact a linear FSR of length 
L. The following theorem gives the increment for this situation and can be viewed as 
a partial generalization to the quadratic case of theorem 1 in [6]. 

THEOREM 2. Ifsome linear FSR of length L generates the sequence sN = (so, s1,. . ., 
S N - ~ ) ,  but no quadratic FSR of length L generates the sequence sN+l = (SO,s1,. - * , S N ) )  

then any quadratic F S R  that generates the latter sequence has length Q satisfying 
Q 2 N + 1 - rank(M(N, L) ) .  

Sequences with period 2" generated by a nonlinear FSR of length n are called de 
Bruijn sequences of span n. We derive upper and lower bounds on the quadratic spans 
of de Bruijn sequences of span n. In these results, we consider matrices M(2" + q, q),  
which have 2" rows, so that each column contains a period of the sequence. It then 
follows that the quadratic span of a de Bruijn sequence s is given by the smallest number 
q with the property that (EQs)*" is a linear combination of the columns of M(2n + q, q). 
The next proposition follows from the observation that the matrix M(2" + q,q) has 
rank at most 2" and rank(M(2" + n, n ) )  = (;) + n. 
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PROPOSITION 3. Ifs is a de Bruijn sequence of  span n, then 

To improve the upper bound to 2" - (i) - 1 requires quite a bit of work. The idea 
is to show that M(2" + q,q)  contains at least one more linearly independent column. 
We do this by proving the following lemma. 

LEMMA 4. Let s be a de Bruijn sequence o f  span n, n 2 3. The column ( ( E o  o 
E ~ ) s ~ ~ "  in the matrix ~ ( 2 "  + n + 1, n + 1) is linearly independent of dl the columns 
in M(2" + n,n) and the column 

Lemma 4 is used to establish the improved upper bound stated below. 

THEOREM 5 .  Ifs is a de Bruijn sequence of  span n, n 2 3, then 

q(s)  5 2" - (;) - 1. 

We show that the upper bound given in theorem 5 is best possible by showing it 
is attained by the class of de Bruijn sequences formed by adding a zero term to the 
m-sequences - maximum-period sequences of period 2" - 1 generated by linear FSR's 
of length n. The proof uses theorem 2 to establish the increase in quadratic span when 
the discrepancy due t o  the added term is encountered. 

THEOREM 6. Let s be a de Bruijn sequence of span n obtained from an m-sequence 
of span n by adding the zero n-tuple. Then 

q(s )  = 2" - (;) - 1. 

For example, 000111101011001 is one period of an m-sequence of span 4. Then 
0001111010110010 is a de Bruijn sequence of span 4 with maximum quadratic span 9. 

It is easy to see that a lower bound on the quadratic span of a de Bruijn sequence 
of span n is n + 1. From our experimental results, we conjecture the following: 

CONJECTURE. The quadratic span of a de Bruijn sequence of span n is at least 
n + 2,  for n > 3. 

Finally, we report the results of computer runs that determined the quadratic 
spans of the de Bruijn sequences of span n, n = 3, 4, 5 ,  and 6. Our results for n = 
4 and 5 correct the previously published results [2] for these case .  In each case, the 
22"--n de Bruijn sequences of span n were generated by considering all possible feedback 
functions. Each time a de Bruijn sequence was found, its linear and quadratic spans 
were determined and the results tallied. The linear spans were computed and compared 
with the results of 111 as a check. 

The case n=6, with its 226 de Bruijn sequences, presented the only real computa- 
tional burden. In this case, we used several SUN workstations running in parallel, both 
at the MITRE Corporation and at Northeastern University to complete the run. The 
quadratic span distributions are listed in figure 2. 
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