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Abstract

The Data Encryption Standard (DES) is the best known and most
widely used cryptosystem for civilian applications. It was developed
at IBM and adopted by the National Buraeu of Standards in the
mid 70's, and has successfully withstood all the attacks published
so far in the open literature. In this paper we develop a new type of
cryptanalytic attack which can break DES with up to eight rounds
in a few minutes on a PC and can break DES with up to 15 rounds
faster than an exhaustive search. The new attack can be applied to
a variety of DES-like substitution/permutation cryptosystems, and
demonstrates the crucial role of the (unpublished) design rules.

1 Introduction

Iterated cryptosystems are a family of cryptographically strong functions
based on iterating a weaker function n times. Each iteration is called
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a round and the cryptosystem is called an n round cryptosystem. The 
round function is a function of the output of the previous round and of 
a subkey which is a key dependent value calculated via a key scheduling 
algorithm. The round function is usually based on S boxes, bit permuta- 
tions, arithmetic operations and the exclusive-or (denoted by 63 and XOR) 
operations. The S boses are nonlinear translation tables mapping a small 
number of input bits to a small number of output bits. They are usually 
the only part of the cryptosystem that is not linear and thus the security of 
the cryptosystem crucially depends on their choice. The bit permutation is 
used to rearrange the output bits of the S boxes in order to make the input 
bits of each S box in the following round depend on the output of as many 
S boxes as possible. The XOR operation is often used to mix the subkey 
with the data. In most applications the encryption algorithm is assumed 
to be known and the secrecy of the data depends only on the secrecy of the 
randomly chosen key. 

An early proposal for an iterated cryptosystem was Lucifer[7], which 
was designed at IBM to resolve the growing need for data security in its 
products. The round function of Lucifer has a combination of non linear 
S boxes and a bit permutation. The input bits are divided into groups 
of four consecutive bits. Each group is translated by a reversible S box 
giving a four bit result. The output bits of all the S boxes are permuted 
in order to mix them when they become the input to the following round. 
In Lucifer only two fixed S boxes (So and Sl) were chosen. Each S box can 
be used at  any S box location and the choice is key dependent. Decryption 
is accomplished by running the data backwards using the inverse of each S 
box. 

The Data Encryption Standard (DES) [14] is an improved version of Lu- 
cifer. It was developed at  IBM and adopted by the U.S. National Bureau of 
Standards (NBS) as the standard cryptosystem for sensitive but unclassified 
data (such as financial transactions and email messages). DES has become 
a well known and widely used cryptosystem. The key size of DES is 56 bits 
and the block size is 64 bits. This block is divided into two halves of 32 
bits each. The main part of the round function is the F function, which 
works on the right half of the data using a subkey of 48 bits and eight (six 
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bit to four bit) S boxes. The 32 output bits of the F function are XORed 
with the left half of the data and the two halves are exchanged. The com- 
plete specification of the DES algorithm appears in [14]. In this paper the 
existence of the initial permutation and its inverse are ignored, since they 
have no cryptanalytic significance. 

An  extensive cryptanalytic literature on DES was published since Its 

adoption in 1977. Yet: no short-cuts which can reauce the compiexity of 
cryptanalysis to less than half of exhaustive search were ever reported in 
the open literature. 

The 50% reduction[9] (under a chosen plaintext attack) is based on a 
symmetry under complementation. Cryptanalysis can cxploic this symme- 
try if two plaintext/ciphertext pairs (PI, TI) and (P2 ,  T I )  are asdable  with 
PI = P 2 .  

Diffie and Hellman[G] suggested an exhaustive search of t t e  entire key 
space in one day on a parallel machine. They estimate the cost of this 
machine to be $20-million and the cost per solution to be $5000. 

Hellman[8] presented a time memory tradeoff method for a chosen plain- 
text attack. A special case of this method takes about ',I3' time and ',I3* 

memory, with a 256 preprocessing time. Hellman suggests a special pur- 
pose machine which produces 100 solutions per day with an average wait 
of one day. He estimates that the machine costs about $Pmillion and the 
cost per solution is about $1-100. The preprocessing is estimated to take 
2.3 years on the same machine. 

The Method of Formal Coding in which the formal expression of each 
bit in the ciphertext is found as a XOR sum of products of the bits of 
the plaintext and the key was suggested in [9]. Schaumuller-Bichl[l5,16] 
studied this method and concluded that it requires an enormous amount of 
computer memory which makes the whole approach impractical. 

In 1987 Chaum and Evertse[2] showed that a meet in the middle attack 
can reduce the key search for DES with a small number of rounds by the 
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following factors: 
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They also showed that a slightly modified version of DES with seven rounds 
can be solved with a reduction factor of 2. However, they proved that a 
meet in the middle attack of this kind is not applicable to DES with eight 
or more rounds. 

In the same year. Donald W. Davies[3] described a known plaintext 
cryptanalytic attack on DES. Given sufficient data, it could yield 16 linear 
relationships among key bits, thus reducing the size of a subsequent key 
search to 240. It exploited the correlation between the outputs of adjacent 
S boxes, due to their inputs being derived from, among other things, a pair 
of identical bits produced by the bit expansion operation. This correlation 
could reveal a linear relationship among the four bits of key used to modify 
these S box input bits. The two 32-bit halves of the DES result (ignoring 
IP) receive these outputs independently, so each pair of adjacent S boxes 
could be exploited twice, yielding 16 bits of key information. 

The analysis does not require the plaintext P or ciphertext T but uses 
the quantity P@T and requires a huge number of random inputs. The S box 
pairs vary in the extent of correlation they produce so that, for example, 
the pair S7/S8 needs about 1017 samples but pair S2/S3 needs about lo2'. 
With about loz3 samples, all but the pair S3/S4 should give results (i.e., a 
total of 14 bits of key information). To exploit all pairs the cryptanalyst 
needs about loz6 samples. The S boxes do not appear to have been designed 
to minimize the correlation but t,hey are somewhat better than a random 
choice in this respect. The large number of samples required makes this 
analysis much harder than exhaustive search for the full DES, but for an 
eight round version of DES the sample size of 10l2 or (about Z4') is on 
the verge of practicality. Therefore: Davies' analysis had penetrated more 
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rounds than previously reported attacks. 

During the last decade several cryptosystems which are variants of DES 
were suggested. Schaumuller-Bichl suggested three such cryptosystems [Is, 
171. TWO of them (called C80 and C82) are based on the DES structure with 
the replacement of the F function by nonreversible functions. The third 
one, called The Generalized DES Scheme (GDES), is an attempt to speed 
up DES. GDES has 16 rounds with the original DES F function but with 
a larger block size which is divided into more than two parts. She claims 
that GDES increases the encryption speed of DES without decreasing its 
security. 

Another variant is the Fast Data Encryption Ai;orithm j Feal). Feal was 
designed to be efficiently implementable on an eight bit mcroprocessor. 
Feal has two versions. The first[l9], called Feal-4. has foi:r -minds. Feal-4 
was broken by Den-Boer[d] using a chosen plaintext attack -vith 100-10000 
encryptions. The creators of Feal reacted by creating a new version, called 
Feal-8, with eight rounds and additional XORS of the plaintext and the 
ciphertext with subkeys[l8,13]. Both versions were descnbed as crypto- 
graphically better than DES in several aspects. 

In this paper we describe a new kind of attack that can be applied to 
many DES-like iterated cryptosystems. This is a chosen plaintext attack 
which uses only the resultant ciphertexts. The basic tool of the attack 
is the ciphertest pair which is a pair of ciphertexts whose plaintexts have 
particular differences. The two plaintexts can be chosen at random, as long 
as they satisfy the difference condition, and the cryptanalyst does not have 
to know their values. The attack is statistical in nature and can fail in rare 
instances 

2 Introduction to differential cryptanalysis 

Dzfferential cryptanalysis is a method which analyses the effect of particular 
differences in plaintext pairs on the differences of the resultant ciphertext 
pairs. These differences can be used to assign probabilities to the possible 
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keys and to locate the most probable key. This method usually works on 
many pairs of plaintexts with the same particular difference using only the 
resultant ciphertext pairs. For DES-like cryptosystems the difference is 
chosen as a fixed XORed value of the two plaintexts. In this introduction 
we show how these differences can be analyzed and exploited. 

Let us recall how the DES F function behaves in these terms. The F 
function takes a 32 bit input and a 43 bit key. The input is expanded (by 
the E expansion) to 43 bits and SORed with the key. The result is fed into 
the S boxes and the resultant bits are permuted. 

Although DES seems to be very non linear in its input bits, when par- 
ticular combinations of input bits are modified simultaneously, particular 
intermidiate bits are modified in a usable way with a relatively high prob- 
ability after several rounds. We describe this property by means of the 
particular XOR value of the two plaintexts. the particular XOR value of 
the intermidiate round and the corresponding probability. Two such en- 
cryptions are called a pair. 

The XOR of pairs is invariant in the XORing of the key and is linear 
in the E expansion, the P permutation and the XOR operation between 
the left half of the data and the output of the F function. Therefore, it 
is very easy to push the knowledge of such a XOR in the input over these 
operations. 

DES contains also S boxes which are non linear tables. Knowledge of 
the input XOR of a pair cannot guarantee knowledge of its output XOR. 
However, every input XOR of an  S box suggests a probabilistic distribution 
of the possible output XORs. In this distribution several output XORS 
have a relatively high probability, Table 1 describes the distribution of 
the output XORs for several input XORs in S1. The table counts the 
number of possible pairs that lead to each of the entries. Each input XOR 
has 64 possible pairs which are divided among the 16 entries in a row. The 
average entry is thus four, representing a probability of & = &. We see 
that a zero input XOR has only one possible output XOR, which is zero. 
Many entries are impossible or have a small probability. However, there 
are several entries with probability $ (i.e., 16 out of 64) or close to  it. 
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We can use this property as a tool to identify key bits. If we can find 
the output XOR of the F function of the last round, we can filter the set 
of possible subkeys entering this F function when the pair of ciphertexts is 
known. Using both ciphertexts it is easy to calculate the input XOR of the 
F function of the last round and its output XOR. Then the input XOR and 
output XOR of each S box in the last round are known. In case k input pairs 
can lead to that entry in the table. exactlv k values of the corresponding six 
subkey bits are possible. Most subkey values are suggested by only few 
pairs. However, the real value of the subkey bits is suggested by all the 
pairs and thus can be identified. 

The following introductory example breaks a three round DES. The 
attack uses pairs of ciphertexts whose corresponding plaintext XORs consist 
of a zero right half and an arbitrary left half. The main part of the algorithm 
counts the number of pairs which suggest each possible value of the six key 
bits entering each S box. For each ciphertext pair we do the following: The 
input XOR of the F function in the first round is zero and thus its output 
XOR must be zero. The left half of the ciphertext is calculated as the XOR 
value of the left half of the plaintext, the output of the first round and the 
output of the third round (1 = L @ A @ C, where L is the left half of the 
plaintext and I is the left half of the ciphertext. See figure 1). Since the 
plaintext XOR is fixed and the ciphertext XOR is known and the output 
XOR of the first round is zero, the output XOR of the F function in the 
third round can be calculated as the XOR of the left half of the plaintext 
XOR and the left half of the ciphertext XOR. The inputs of the F function 
in the third round are easily extractable from the ciphertext pair. 

The following analysis can be done for each S box in the third round. 
In this example we only show how to find the six key bits entering S1 in 
the third round. The input XOR and output XOR of S1 can be easily 
derived from the input XOR and output XOR of the F function. Let k be 
the number of possible input pairs to S1 with those input XOR and output 
XOR. The value of the input bits (denoted by S E )  which are XORed with 
the six key bits (denoted by S x )  to make the actual value of the input of 
the S box (denoted by S J )  is extractable from the ciphertext. Therefore, 
there are exactly k key values suggested by the pair via SK = SE @ SI .  For 
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?laintext ( P )  & 
I KI . 

F a 

?=+ Ciphertext (T) 

Figure 1: DES with three rounds 

16, 22 17, 23 

Table 2: Possible keys for 34 --t D by S1 with input 1, 35 (in hexadecimal) 

example, if the ciphertext bits entering S1 in the third round of the two 
encryptions are SE = 1, Sz = 35 and the output XOR is D then the value 
of SK must appear in table 2. Each line in the table describes two pairs 
with the same two inputs but with two possible orders. Each pair leads to 
one key, so each line leads to two keys (which are SE @ SI and Sg @ SI ) .  
Given many pairs we can count the number of pairs suggesting each possible 
value of the key bits entering S1. The value which is suggested by all the 
pairs must be the real value of the key bits. 
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We now describe the basic tool which allows us to push the knowledge 
of the plaintext XOR to a knowledge of an  intermidiate XOR after as many 
rounds as possible, which is called an n round characteristic. Every n round 
characteristic has a particular plaintext XOR S l p ,  a particular XOR of the 
data in the nth round f l T  and a probability pR in which the XOR of the 
data in the nth round is s1T when random pairs whose plaintext XOR is Slp 

are used. Any pair whose plaintext XOR is 52p and whose XOR of the data 
in the nth round (using a particular key) is s2T is called a right pair. Any 
other pair is called a wrong pair. Therefore, the right pairs form a fraction 
pR of all the possible pairs. In the following examples of characteristics we 
denote the input and output XORs of the F function in the first round by 
u‘ and A’ respectively, the input and output XORs of the F function in the 
second round by b’ and B‘ respectively, etc. 

The following one round characteristic has probability 1 (for any L’). 
This is the only one round characteristic with probability greater than i. 

a’ = 0, always - F *  A’ = 0, 

This characteristic has special importance since it plays a role in all the 
characteristics used to break DES-like cryptosystems. 
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a' = 60 00 00 00, 
F *  

= P(E0  00 00 00,) , 

The following one round characteristic has probability (for any L'). 

with probability 

( S22p = (L' ,  60 00 00 00,) J , 
4 

s1T = (L' @ 00 80 82 OO,, 60 00 00 00,) 

The concatenation of two characteristics lets us build a longer charac- 
teristic with probability which is close to the product of their probabilities. 
A concatenation of characteristics a' and R2 can be done if the swapped 
value of the two halves of 0; equals 0%. By concatenating the two charac- 
teristics described above we can get the following three round characteristic 
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2 
with probability ( E )  M 0.05: 

( s1p = 00 80 82 00 60 00 00 00, 

with probability 2 

- 
- b’ = 0 always - F -  B‘ = 0 - - - 

c’ = 60 00 00 00, with probability 8 F 4  

!& = 00 80 82 00 60 00 00 00, 

Several characteristics can be concatenated to themselves. These char- 
acteristics are called iterative characteristics. We can concatenate an itera- 
tive characteristic to itself any number of times. The advantage of iterative 
Characteristics is that we can build an n round characteristic for any large 
n with a fixed reduction rate of the probability for each additional round, 
while in non iterative characteristics the reduction rate of the probability 
usually increases due to the avalanche effect. 

There are several kinds of iterative characteristics but the simplest ones 
are the most useful. These characteristics are based on a non zero input 
XOR to the F function that may cause a zero output XOR (i-e., two dif- 
ferent inputs yield the same output). This is possible in the F function 
of DES if at least three neighboring S boxes differ in the pair (see also at 
[5,1]). The structure of these characteristics is as follows. The input XOR 
of the F function is marked by X, s.t. there are as many pairs as possible 
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whose input XOR is X and the output XOR is zero. 

il? = (L’, R’) = (X, 0) 

I 

7 

The best such characteristic (with X = 19 60 00 00) has probability about 
&. This characteristic is used in the attacks on DES with nine or more 
rounds. 

The statistical behavior of most characteristics does not allow us to look 
for the intersection of all the keys suggested by the various pairs as we 
did before, since the intersection is usually empty: the wrong pairs do 
not necessarily list the right key as a possible value. However, we know 
that the right key value should result from all the right pairs, which occur 
with the characteristic’s probability. All the other possible key values are 
fairly randomly distributed: the expected XOR value (which is usually 
not the real value in the pair) with the known ciphertext pair can cause 
any key value to be possible, and even the wrong key values suggested 
by the right pairs are quite random. Consequently, the right key appears 
with the characteristic’s probability (from right pairs) plus other random 
occurrences (from wrong pairs). To find the key we just have to count the 
number of occurrences of each of the suggested keys. When the number of 
pairs is large enough, the right key is likely to be the one that occurs most 
often. 
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3 Breaking DES with six rounds 

The cryptanalysis of DES with six rounds is more complex than the crypt- 
analysis of the three round version. We use two statistical Characteristics 
with probability &, and choose the key value that is counted most often. 
Each one of the two characteristics lets us find the 30 key bits of K6 which 
are used at the input of five 5 boxes in the sixth round, but three of the 
S boxes are common so the total number of key bits found by the two 
characteristics is 42. The other 14 key bits can be found later by means 
of exhaustive search or by a more careful counting on the key bits entering 
the eighth S box in the sixth round. 

The first characteristic is: 

= 40 08 00 00 04 00 00 00, 
I 

with probability a 

always 

with probability 

Where in the fourth round d‘ = b’ 63 C’ = 40 08 00 00,. 

Five S boxes in the fourth round (S2, S5, ..., SS) have zero input 
XORS (Skd = 0) and thus their output XORs are zero (Sbd = 0). The 
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corresponding output XORs in the sixth round can be found by F’ = c‘ 8 
D’$I’. Since the right key value is not suggested by all the pairs (due to the 
probabilistic nature of the characteristic). We should simultaneously count 
on subkey bits entering several S boxes. The best approach is to  count on 
all the 30 countable subkey bits together, which maximizes the probability 
that the right key value is the one counted most often. A straightforward 
implementation of this method requires 2= counters, which is impractical 
on most computers. However, the improved counting procedure described 
in the full paper achieves exactly the same result with much smaller memory 
(the program size is about 1OOK bytes on a personal computer). 

The same efficient algorithm is used to find the 30 key bits of S1, S2, 
S4, S5 and S6 using the second characteristic R2 which is: 

fl$ = 00 20 00 08 00 00 04 00, 

4 
a‘ = 00 00 04 00, with probability $ - - A‘ = 00 20 00 08, 

B’ = 0, b’ = 0, always 

C’ = 00 20 00 08, C’ = 00 00 04 00, with probability f 
~ 

1 
G?$ = 00 20 00 08 00 00 04 00, 

Where in the fourth round d’ = b‘ @ C’ = 00 20 00 08,. 

Again, five S boxes in the fourth round (Sl ,  S2, S4, S5 and SS) have 
zero input XORs. The computed key values of the common S boxes S2, S5 
and S6 should be the same in both calculations (otherwise we should ana- 
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lyze more pairs or consider additional candidate keys with almost maximal 
counts). If this test is successful, we have probably found 42 bits of K6. 

DES has 56 key bits and 14 of them are still missing. We can find them 
by searching all the 214 possibilities for thc expected plaintext XOR value 
of the decrypted ciphertexts. 

4 Results 

We now describe the results we get by this kind of attacks. Due to space 
limitations. we are not describing the attacks in detail in this extended ab- 
stract. Note that the complexities we quote are the number of encryptions 
needed to create all the necessary pairs while the attacking algorithm itself 
uses fewer and simpler operations. 

DES with six rounds was broken in less than 0.3 seconds on a personal 
computer using 240 ciphertexts. DES with eight rounds was broken in less 
than two minutes on a computer by analysing 15000 ciphertexts chosen 
from a pool of 50000 candidate ciphertexts. DES with up to 15 rounds 
is breakable faster than exhaustive search. DES with 15 rounds can be 
broken in about 252 steps but DES with 16 rounds still requires 25s steps 
(which is slightly higher than the complexity of an exhaustive search). A 
summary of the cryptanalytic results on DES with intermidiate number of 
rounds appears in table 3. 

Some researchers have proposed to strengthen DES by making all the 
subkeys Ki independent (or at  least to derive them in a more compli- 
cated way from a longer actual key K ) .  Our attack can be carried out 
even in this case. DES with eight rounds with independent subkeys (i.e., 
with 8 .48 = 384 independent bits which are not compatible with the key 
scheduling algorithm) was broken in less than two minutes using the same 
ciphertexts as in the case of dependent subkeys. DES with independent 
subkeys (i.e., with 16 . 48 = 768 independent bits) is breakable within 26* 
steps. As a result, any modification of the key scheduling algorithm cannot 
make DES much stronger. The attacks on DES with 9-16 rounds are not 
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Rounds 
4 
6 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Complexity 

2g 
216 

226 

2 4  

235 

236 

243 

244 

251 

252 

258 

Table 3: Summary of the cryptanalysis of DES 

influenced by the P permutation and the replacement of the P permuta- 
tion by any other permutation or function can’t make them less successful. 
On the other hand, the replacement of the order of the eight DES S boxes 
(without changing their values) can make DES much weaker: DES with 
16 rounds with a particular replaced order is breakable in about 246 steps. 
The replacement of the XOR operation by the more complex addition op- 
eration makes this cryptosystem much weaker. DES with random S boxes 
is shown to be very easy to break. Even a minimal change of one entry in 
one of the DES S boxes can make DES easier to break. GDES is shown to 
be trivially breakable with six encryptions in less than 0.2 seconds, while 
GDES with independent subkeys is breakable with 16 encryptions in less 
than 3 seconds. 

This attack is applicable also to a wide variety of DES-like cryptosys- 
tems. Lucifer with eight rounds can be broken using less than 60 ciphertexts 
(30 pairs). The Feal-8 cryptosystem can be broken with less than 2000 
ciphertexts (1000 pairs) and the Feal-4 cryptosystem can be broken with 
just eight ciphertexts and one of their plaintexts. As a reaction to our 
attack on Feal-8, its creators introduced Feal-N[11], with any even num- 
ber of rounds N. They suggest the use of Feal-N with 16 and 32 rounds. 
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Nevertheless, Feal-N can be broken for any N 5 31 rounds faster than an 
exhaustive search. 

Differential cryptanalytic techniques are applicable to hash functions, 
in addition to cryptosystems. For example, the following messages hash to 
the same value in Merkle’s Snefru[lO] function with two pass: 

0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 

0 00000000 f1301600 13dfc53e 4cc3b093 37461661 ccd8b94d 24d9d35f 
71471fde 00000000 00000000 00000000 00000000 

3 00000000 ld197f00 2a~a3t6f  cf33f3dl 8674966a 816e5d51 acd9a905 
53cld180 00000000 00000000 00000000 00000000 

00000000 e98c8300 le777a47 b5271f34 a04974bb 44cc8b62 be4bOefc 
18131756 00000000 00000000 00000000 00000000 

and the following two messages hash to  the same value in a variant of 
Miyaguchi’s N-Hash[l2] function with six rounds: 

CAECE595 127ABF3C 1ADE09C8 lF9AD8C2 

4A8C6595 92iA3F3C 1ADE09C8 lF9AD8C2. 
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