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1. Introduction 

Since the group of an elliptic curve deiined over a finite field F, was proposed 

for Diffie-Hellman type cryptosystems in [7] and [15], some work on implementa- 

tion has been done using special types of elliptic curves for which the order of the 

group is trivial to compute ([2], [13]). A consideration which discourages the use 

of an arbitrary elliptic curve is that one needs Schoof’s algorithm [16] to count the 

order of the corresponding group, and this algorithm, in addition to being rather 

complicated, has running time O(log’ q) for an elliptic curve defined over F,. Thus, 

in applications of elliptic curves where one needs extremely large q - for example, 

the original version of the elliptic curve primality test ([4], [ll]) - this algorithm 

is too time-consuming. 

However, elliptic curve cryptosystems seem to be secure at present provided 

only that the order of the group has a prime factor of about 40 digits, and in this 

range Schoof’s algorithm is feasible. The purpose of this paper is to describe how 

one can search for suitable elliptic curves with random coefficients using Schoof’s 

algorithm. We treat the important special case of characteristic 2, where one has 

certain simplifications in some of the algorithms. 
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2. Motivation for constructing elliptic curve cryptosystems with variable 

coefllcients 

At present no subexponential algorithm is known for the discrete logarithm 
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problem on a general elliptic curve: the “baby step - giant step” algorithm (which 
applies in any group) requires time fully exponential in the length of the largest 
prime factor of the order of the group. In other words, suppose that we have 
a nonsupersingular elliptic curve E defined over a finite field whose order IEI is 
divisible, say, by a 40-digit prime I ;  you give me a point P on E (whose order 
is divisible by I); and I multiply P by a secret integer k and give you the result 
Q = kP. Then, with our present level of theoretical knowledge and technology, you 
will be unable to find k from Q. This is because no algorithm faster than the baby 
step - giant step algorithm is known for such an elliptic curve. 

This situation is in stark contrast with that of the classical discrete logarithm 
problem in the multiplicative group of a finite field. There, “index calculus” type 
subexponential probabilistic algorithms have been known for some time, and work 
by D. Coppersmith (in small characteristic) and D. Gordon (over a prime field, 
using the number field sieve) make it reasonable to expect that the time to solve the 

discretelog in F; is bounded by Lq[1/3,c] = exp((~+o(l))((logq)’~~(loglogq)~~~)) 

for a fairly s m a l l  constant c. 
For this reason, it seems that discrete log cryptosystems based on the group 

of an elliptic curve are secure over much smaller fields than those based on the 
multiplicative group of the field, We also note that there is much more choice 
available when working with elliptic curves: for fixed Q one has only one group F t  , 
but one obtains many groups E by varying the coefficients of the defining equation 
of the elliptic curve. 

Recently, S. A. Vanstone’s group at the University of Waterloo implemented a 
cryptosystem using the elliptic curve y2 + y = x3 over F, with q = Z5” [13]. This 
elliptic curve has very special properties - complex multiplication by cube roots of 
unity, and supersingularity - and this means that for q G 2 (mod 3) one has the 
simple formula IBI = q + 1. In the present paper we discuss using a variable elliptic 
curve, i.e., taking advantage of the availability of many different E over a fixed field 
F,, q = 2n. 

From a practical point of view, there are both pros and cons in using random 
elliptic curves over Fp rather than the special one in [13]. On the positive side, we 
obtain the added security of being able to change the curve periodically. Moreover, 
in order to break the cipher one would need an algorithm for solving the discrete 
log problem on an arbitrary elliptic curve, rather than just on a particular elliptic 
curve with special structure (complex multiplication by cube roots of unity and 
supersingularity). Very recently, this advantage has become especially significant 
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because of [14], in which Menezes, Okamoto and Vanstone obtained a reduction 
of the discrete logarithm on an elliptic curve to the discrete logarithm in a finite 
field, a reduction which leads to a subexponential algorithm for the discrete log on 
a supersingular elliptic curve but not on a nonsupersingular curve (which is the 
general case). 

(It should be noted, however, that to avoid the Menezes-Okamoto-Vanstone 
reduction one does not have to use random curves and Schoof’s algorithm. There are 
families of nonsupersingular curves whose orders are easy to compute, for example: 

(1) thecurvey2+zy =z3+x2+1overF2” forvariablenhasIE1 = l ( q ) n - l 1 2 ;  

(2) the curve y2 + y = x3 over F, for variable p G 1 (mod 3) has [El = p + 1 + a, 
where a is given by a2 + 3b2 = 4p with integers a 1 (mod 3) and b G 0 (mod 3).) 

On the negative side, when using a random curve, in addition to the burden 
of having to apply Schoof’s algorithm to find a case when the number of points 
is divisible by a 2 40-digit prime, the actual computations on a random curve are 
somewhat slower than on the special curve y2+y = x3  used in [13]. Suppose we want 
to compute the multiple of a point by an integer that contains n + 1 bits, of which 
m + 1 bits are 1. In the case of the curve y2 + y = x 3 ,  this computation takes only 
9m multiplications in the field. But in the case of the curve y2 + s y  = x 3  +a2x2  + a6 
(see 53 below for details on the notation), we need 16m + 4n multiplications. A 
second annoyance is that in the general case one always has to carry along both 
the x- and y-coordinates of points, whereas in the case of the special curve one can 
simply keep track of one bit of y, and at any time reconstruct y from that bit and 
the corresponding 2, without performing any multiplications (see [13]). 

An implementation of a random-curve cryptosystem might work as follows. A 
special-purpose chip is set up which does arithmetic in a fixed large extension of 
F2 and which can compute on an elliptic curve over the field once the coefficients 
are given to it. Once a week, a computer generates a new random coefficient a6 
such that the order of either the curve y2 + s y  = x 3  + a6 or the “twisted” curve 
y2 + xy = x3 + a2x2 + 0 6 ,  where a2 is any element of the field having trace 1 
(a2 = 1 will do if the field has odd degree over Fz), is divisible by a large prime. 
This involves finding the t from Schoof’s algorithm (see $4 below) for the first curve 
- then the first curve has 2” + 1 - t points and the twisted curve has 2” + 1 + t 
points - and verifying (perhaps by the elliptic curve factorization algorithm) that 
one of these. two numbers does not factor completely into primes of fewer than 40 
digits. Then for the week that follows the coefficient pair (a2,ae) becomes part 
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of everyone’s public key, i.e., it is read into each of the special-purpose chips that 
are programmed to perform key exchanges, signatures, message transmission, etc., 
using computations on a given elliptic curve. 

3. Elliptic curves in characteristic 2 

An elliptic curve E over an arbitrary field K can be defined as the set of 
solutions of an equation 

(where ai E K and the curve has no singularities), together with the “point at 
infinity 0,” which is the identity element of the abelian group E. Here the subscripts 
of the coefficients indicate their “weights” when they are regarded as indeterminates; 
the weights are chosen so that the equation (1) is homogeneous if 2 and y are given 
weights 2 and 3, respectively. 

If char K # 2, one can use a linear change of variables to reduce the equation to 
a form in which a1 = a3 = 0. However, we shall be interested in the case char K = 2. 
In that case it is easy to see that E has a nontrivial point of order 2 (i.e., [El is even) 
if and only if a1 # 0: in fact, the point with 2-coordinate z = u3/a1 is the point of 
order 2. Such a curve is called “nonsupersingular” (equivalently, its j-invariant is 
nonzero). In that case, using a linear change of variables, without loss of generality 
we may assume that the equation of E is in the form 

The other possibility is that E is “supersingular,” i.e., any of the following 
equivalent conditions holds: (i) a1 = 0, (ii) [El is odd, (iii) the j-invariant of E is 
zero. In this case, using a linear change of variables, without loss of generality we 
may suppose that the equation of E’is in the form 

In characteristic 2, the addition law Pz8,y8 = Pzl,yl @ Pz2,y2 is given by the 
following rules in the nonsupersingular case (equation (2a)) and the supersingular 
case (equation (2b)), respectively: (1) the additive inverse of Pz,y is -Pz,y = Pz,y+z 
(respectively, -Pz,r = P Z , y + a 8 ) ;  (2) if Pz, ,yl # fPz2,y2, then 
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(respectively, 

5 3  = 2 1  + 5 2  + (Y: + Y f ) / ( 4  + 5% 
y3 = y1 + a3 + ( 5 1  + z3)(?h + Y2)/(zl + z2); ) 

(respectively, 

4. Schoof’s algorithm 

A detailed description of the algorithm is in [16]. Here we shall give only an 
outline. By Hasse’s theorem, the number of points on an elliptic curve E over the 
field of q = 2” elements is of the form N = q + 1 - t ,  where It1 5 2 4 .  Schoof’s 
algorithm determines N modulo I for a bunch of small primes I. If we run through 
enough I so that nl > 4,/5, then N can be uniquely determined by the Chinese 
Remainder Theorem. 

For I > 2 one determines N modulo I by looking at the points of order I with 
coordinates in field extensions of F,. It turns out that N modulo I is determined by 
the action of the map (2 ,  y) I+ (ZQ, yQ) on the set of points of order I. For example, 
suppose that the map ( 5 , ~ )  H (zQ,yQ) leaves some such point fixed. Then this 
means that there is a point of order I whose coordinates are in F,, i.e., our original 
group of points with F:coordinates has a nontrivial element of order I. In that case 
N =- 0 (mod I). More generally, the value of N modulo I is determined by how the 
q-th power map permutes the points of order I. 

Thus, a basic role in Schoof’s algorithm is played by the so-called “division 
polynomials,” which characterize the points P (with coordinates in extensions of 
F,) for which IP is the identity. 

5. Division polynomials in characteristic 2 

Before specializing to characteristic 2, we recall that in the general case of an 
elliptic curve given by (l), the division polynomial fn E Z[z, y, 01, a2, u3,04, a61 is a 

nonzero homogeneous polynomial of total weight n2 - 1 (recall that z has weight 2, y 

has weight 3, ai has weight i) such that for a nonzero point P,,, on the elliptic curve 
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one has nPZ,I = 0 (‘‘Pz,I is a point of order n”) if and only if fn(z, y) = 0 (where 
for fixed ai E K we consider fn as a polynomial in K[s,  y]). These polynomials 
satisfy the following fundamental relations: 

Proposition 1. For rn > n 2 2 

For the proof, see [lo]. 
Proposition 2. For n 2 1, 

where f2 o n denotes the function f2 applied to the x- and y-coordinates of nP,,,. 
The proof follows the same method as the proof of (5)m,n in [lo]. That is, (6) 

will hold as a formal identity in Z[z, y, al, a2, u3, a4, as] - and hence will hold over 
any field and with any stipulated values of the a, - provided that it holds over the 
complex numbers. To prove (6) as an identity over C, one observes that fzn has a 
simple zero at all non-lattice points of order 2n and a pole of order 4n2 - 1 at the 
lattice points; f: has a zero of order 4 at all non-lattice points of order n and a pole 
of order 4n2 - 4 at the lattice points; and f2 o n has a simple zero at all points of 
order 2n which are not of order n and a triple pole at a l l  points of order n. Thus, 
both sides of (6) have the same zeros and poles, and so are equal up to a constant 
factor, which is easily checked to be 1. This completes the proof. 

In the case when charK = 2 and E has the equation (2a), the first few fn are: 

In the supersingular case (2b), the first few fn are: 

(7b) 
5 fl = 1, f2 = a3, f3 = x4 + a35 + a:, f4 = a3. 

Remark. Using the expression for f f  in (7a), we see that the number of points 
on the elliptic curve (2a) is divisible by 4 if and only if the trace of a2 from K = F2n 

to F2 is zero. Namely, since f f  = z2(x4 + Q), the two nontrivial points of order 4 

are those with x-coordinate x = Their y-coordinates axe in K if and only if 
(2a) can be solved for y with this value of 2. Using the change of variables y H xy, 

we see that the y-coordinates are in K if and only if x + a2 + with z = 
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n-1 has zero trace. But u ~ z - ~  = a: is a conjugate of x, and so the first and third 
terms in the trinomial have the same trace. Thus, we have a nontrivial point of 
order 4 if and only if the trace of a2 is zero. 

Returning to the general case of arbitrary characteristic, we see that for n 2 5 
the following special cases of Proposition 1 can be used to compute fn recursively: 

From this it is easy to see that fn can be expressed as a homogeneous polynomial 
in f2, f3 and f4 of total weight n2 - 1, where f2, f3 and f4 are assigned weights 3, 
8 and 15, respectively. 

Remark. In the case of a nonsupersingular curve in characteristic 2 with equa- 
tion (2a), it is not hard to show by induction that the fn are monic as polynomials 
in x. 

In the case of a supersingular elliptic curve in characteristic 2 with equation 
(2b), the division polynomials have a particularly simple form. For simplicity, we 
take a3 = 1. 

Proposition 3. Ifa3 = 1 in (h), then 
(i) for n even, fn = ft,2; 
(ii) for  n odd, i f  one set4 z = f3 = z4 + z + a:, then there e z i s t  a polynomial 

Pn E F~[u]  of degree [(h2 - 1)/24] 3UCh that fn = Pn(z3) i f 3  An and fn = zPn(z3) 
if  31n. 

6. Multiples of a point in characteristic 2 

Because the formulas in the literature (e.g., [lo]) do not apply in characteristic 
2, we shall give a proof of modified formulas that apply over Fp. 

Let h4 denote the partial derivative with respect to x of the defining equation 
of E ,  i.e., 

x 2  + 21, 
x2 + ~ 4 ,  

in the nonsupersingular case (2a); 

in the supersingular case (2b). 
" = {  (8 )  

(h is assigned the subscript 4 to indicate its weight). 
Proposition 4. Let P = (z,~) be a point on an elliptic curue E over a 

field K of characteristic 2 having equation (2a) ( r e ~ p .  (2b)). For n 2 1 let fn E 
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Fz[z,y,az,as] (resp. f n  E Fz[z,y,aa,a*]) be the division polynomials, and J e t  
fo = 0 .  Then for n 2 2 the coordinates of n P  are 

where h4 is as in (8) and f2 o n has the same meaning as in Proposition 2, i.e., 

x + fn-1 fn+l/ f;4, 

Q3 9 

in the nonsupersingular case (2a); 

in the supersingular c u e  (2b). 
hen= { 

Proof. The formula for the x-coordinate of nP is the same as in [lo] and [16], 
and the proof in the general case is valid in characteristic 2. However, the formula 
for the y-coordinate is quite different (because in [lo] and [16] one has to divide by 
2). We prove the formula for the y-coordinate in (9) by induction on n. For n = 2 
it follows immediately from (4a) and (4b). Now for n 2 2 we suppose that nP is 
given by (9), and we prove the formula for the y-coordinate of (n  + l)P. 

and y-coordinates of nPz,y, and we set 
For the duration of this proof we introduce the notation xn and yn for the z- 

Thus, our induction assumption is that gn = fi+l fn-2/( f2 f:) + (h4/ fz)Zn,  and we 
must prove the analogous formula with n replaced by n + 1. Applying the addition 
formulas (3a) and (3b) to compute the y-coordinate of Pz,y @ nPZIy, in both the 
supersingular and nonsupersingular cases we have 

by the induction assumption and Proposition 2. After clearing denominators, we 
find that the desired formula for gn+l reduces to (5)n+l,n-1. This completes the 
proof. 
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7. Curves of almost-prime order 

For applications to discrete log cryptosystems ([7], [15]), one needs elliptic 
curves over F2n whose order N is either prime or "almost prime." If B is some 
constant, we shall use the term "B-almost prime" to mean that N is divisible by a 
prime factor 2 N / B .  

In practice, apparently such elliptic curves occur with reasonable frequency, 
even when n is fairly large. However, from a theoretical point of view, the situation 
is not satisfactory. In fact, at present one cannot prove (for any fixed B) that there 
are infinitely many elliptic curves over F p  (as n and the coefficients a, vary) of B- 
almost prime order. Because of results of Deuring [3], Waterhouse [19] and Schoof 
[17] on the distribution of this order (see also Lenstra's Proposition 1.7 in [ll]), we 
know that for large n the orders of the elliptic curves over F 2 n  are close to being 
uniformly distributed among the even numbers N which satisfy IN - 2" - 11 5 
2@ = 2"j2+l (more precisely, to be sure there is an E with a given N, one must 
takeN closer to2"+1,i.e., )N-2"-11 5 PI2). Thus, theconjecturethat thereare 
infinitely many elliptic curves of 2-almost prime order over F 2 n  as n varies would 
follow from the following conjecture: There are infinitely many primes in the set 
s = u, (2" - 2("-l)I2, 2" + 2(n-1)/2). More generally, one would expect that the 
probability of an integer in S being B-almost prime is similar to the probability 
that an arbitrary integer of the same order of magnitude is B-almost prime. But 
such a conjecture has not been proved. 

One could resolve this theoretical difficulty by constructing cryptosystems from 
the jacobians of genus 2 curves, as described in [9]. Then from a result of Iwaniec 
and Juttila on the number of primes between 22" - 21-5n and 22n (see Theorem 5 
in [l]) and a result of Adleman and Huang [l] on the distribution of the orders of 
such jacobians it follows that for any n one can h d  a genus 2 curve over F2n of 
prime order in probabilistic polynomial time in n. However, the analog of Schoof's 
algorithm for genus 2 curves seems to be prohibitively complicated; in any case, no 
one has yet implemented a polynomial time algorithm to determine the number of 
points on a random genus 2 curve. 

In what follows, let us assume that as the coefficients vary in (2a) the probabil- 
ity of B-almost primality of N = [El is the same as that of a random even integer 
of the same order of magnitude. Since N M g = 2", for fixed B and large g the 

latter probability is asymptotic to x;/; .& M $log2(B/2). Thus, if we want 

a 140-digit (i.e., 1134bit) prime factor of N, so that we can take B = 2"-134, then 
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we expect to have to try n/(n - 135) curves before finding E with IEI divisible by a 
240-digit prime. For example, if we choose TI = 148, then we expect to have to ap- 
ply Schoof’s algorithm about 6 times (since each time we are actually determining 
the order of a curve and its twist simultaneously). 

Alternatively, we could set B = 2, i.e., insist that IEI be twice a prime. Recall 
that JE)/2 is odd if and only if a2 has trace 1 in (2a). Although we must apply 
Schoof’s algorithm more times (M 46 if n = 135), we can shorten the process in 
the following way. In Schoof’s algorithm, when we compute t (mod I) for the first 
few values of I = 3,5,7,. . ., we first determine whether t G q + 1 (mod I); in that 
case our curve has order q + 1 - t divisible by I, and so we immediately move on 
to another random choice of a6. For instance, with q = 2135, after quickly ruling 
out E for which 3, 5 or 7 divides [El, the expected number of curves we must go 
through before finding E with IE1/2 prime is 3 - f . $  .! . log2l3* M 21. 

8. Running time of the search for a suitable curve 

To fix ideas, suppose that we want to find a curve E : y2 + zy = z3 + z2 + a6 
over F, with q = 213‘, such that IEI = g + 1 - t is twice a prime. We shall give 
a rough estimate of the number of field multiplications required to determine t. In 
comparison, testing ( q  + 1 - t)/2 for primality is extremely fast. As explained at 
the end of the last section, we expect to have to go through this procedure about 
21 times with different random a6 E F, before we find the desired E. 

As explained in 94, Schoof’s algorithm proceeds by computing t modulo I for 
all odd primes I 5 L, where L is the smdest prime such that fl,,.I > f i  = 

267.5, i.e., L = 59. (Here we have f i  rather than 4 f i  because we already know 
that [El (mod 4) is 2.) For each I, one runs through the possible T ,  0 I T < I, 
testing whether or not t T (mod I ) .  On the average one expects to find the value 
of T which is t (mod I) after testing about 1/2 values of T .  Given I and 7, the 
testing procedure (except for one or two exceptional values of T ,  which we shall 
neglect in our time estimate) consists in determining whether a certain polynomial 
is zero modulo f,(z). Part of that polynomial does not depend on T ,  and so can be 
computed once and for all modulo f,(z). It turns out that the most time-consuming 
part of the algorithm is computing f i g ,  f:-l, and f:+l modulo fl. For T 2 2 the 
first two of these will be available from the computations for T - 2 and T - 1, and so 
the heart of the computation is to find f:+l modulo f,. Note that fl E FP[z] is monk 
of degree (Z2 - 1)/2. Thus, 135 times we must successively square a polynomial of 
degree < 12/2 and divide the result by fi. The division requires about (12/2)2 = la/4 

- 
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field multiplications. Putting this all together, we find the following estimate for 
the number of field multiplications in the most time-consuming part of Schoof’s 
algorithm for a given elliptic curve: 

135. 15/8k:3.1010. 
351559, 1 prime 

In [13] the authors describe a special-purpose chip that performs about 15000 
multiplications per second in Fps ,  using an optimal normal basis. Since the time is 
roughly linear in the extension degree, a similar chip for F z ~ s s  would perform about 
66000 multiplications per second; hence, the length of time to find IEI is about 

3 a 10’0/66000 = 4.5 - lo5 sec = 5 days. 

Thus, if we have more than 21 computers working in parallel, each with a different 
as, then within a week we are likely to find a new elliptic curve E such that IE1/2 
is a 40-digit prime. 

Remark. The above time estimate is too big, perhaps, for complete practical- 
ity. However, the improved versions of Schoof’s algorithm that are being developed 
(by A. 0. L. Atkin, N. Elkies, V. Miller, and others) should soon decrease this time 
eshmate, thereby making the random-curve method a practical choice of public key 
cryptosystem. 
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