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Introduction 

A shared secret scheme is normally specified in terms of a desired 

security, Pd, and a concurrence scheme, I'. The concurrence scheme (aka 

access structure) identifies subsets of participants (also called 

trustees or shareholders) each of which should be able to cooperatively 

recover the secret and/or initiate the controlled action. The security 

requirement is expressed as the maximum acceptable probability, Pd, that 

the secret can be exposed or the controlled action initiated by a col- 

lection of persons that doesn't include at least one of the authorized 

subsets identified in the concurrence scheme. A concurrence scheme is 

said to be monotone if every set of participants that includes one or 

more sets from r is also able to recover the secret. The closure of r, 

denoted by ?, is the collection of all supersets (not necessarily 

proper) of the sets in r, i.e., the collection of all sets of partici- 

pants that can recover the secret and/or initiate the controlled action. 

A shared secret scheme implementing a concurrence scheme r is said to be 

perfect if the probability of recovering the secret is the same for 

every set, C, of participants: C 6 e. Since, in particular, C could 

consist of only nonparticipants, i.e., of persons with no insider infor- 

mation about the secret, the probability, P, of an unauthorized recovery 

of the secret in a perfect scheme is just the probability of being able 

to 'Iguess" the secret using only public information about I' and the 

shared secret scheme implementing r: P 5 Pd. A shared secret scheme is 

said to be unconditionallv secure if P is independent of the computing 

power or effort that the opponent(s) may be willing to expend in an 

effort to improperly recover the secret. 
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Our convention will be that the secret is a point, p, in a publicly 

known space Vd, and that every point in this space is a priori equally 

likely to be the secret. This says that 

i.e., that the minimum cardinality o f  vd is determined by the security 

requirements. Vd is considered to be embedded in another space S, 

where-except in the degenerate case in which each of the participants 

can unilaterally initiate the controlled action-S will be of higher 

dimension than Vd: 

dim(S) = n > dim(Vd) = m . 

At each point in Vd, there will be the same number of (n-m)- dimensional 

subspaces of S each of which has only that point in common with Vd. A 

point p in Vd and one of the (n-m)-dimensional subspaces, Vi, lying on p 

are chosen randomly and with a uniform probability distribution. 

subspace Vi is called the indicator since given it and knowing Vd, p can 

be easily identified, i.e., Vi indicates or points to the point p in vd. 

Conversely, given Vd and any subspace disjoint from vd, because o f  the 

way in which p was chosen, p can only be "guessed" at with a probability 

of success (on the first try) o f  

The 

A perfect (monotone) geometric shared secret scheme implementing the 

concurrence scheme r is an assignment of subspaces (algebraic varieties 
in general) of Vi to the participants in such a way that the collection 

of subspaces held by any set o f  participants C ,  C c r ,  span Vi and 
hence indicate p, while the space spanned by the collection of subspaces 

held by a set D, for every D # i?, is disjoint from vd and hence yields 
no information whatsoever about p. While it may not be obvious, it is 

at least plausible-and as it happens, true-that the minimum dimension 

of Vi is determined by the concurrence scheme I?. Thus, since the 

security requirement only determines the minimum cardinality of  Vd and 

the concurrence scheme the minimum dimension of Vi, it should be no 
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surprise that the specifications for a shared control scheme do not 

uniquely define a geometric shared secret scheme. 

While it isn't really necessary to exhibit an example to understand 

the implications o f  the preceding remark, an example does make it easier 

to see why the designer of a shared control scheme might choose one 

realization in preference to others. 

threshold scheme (also called a (2,4) threshold scheme) for which the 

specified security is Pd 5 

outsider or any participant alone guessing the secret on their first try 

will be no greater than one in a million. 

in which the secret is concealed must contain at least a million points. 

Since we wish to work with finite geometries coordinatized by finite 

fields, a natural choice in this case would be to work with an extension 

field over GF(2) since 220 = 1,048,576. 

subspace must be at least one since the lowest dimensional realization 

of an indicator for a 2-out-of-4 threshold scheme consists of four 

distinct points on a line (the minimum dimension of Vi is determined by 

I'). Figure 1 shows two possible realizations in this case. 

Consider a simple 2-out-of-4 

i.e., for which the chance of an an 

This says that the subspace 

The dimension of the indicator 

t xVd vi 

"I 
8) b) 

Figure 1. 

In (a), since lvdl = 220, q - 220. 
mation will be required to identify a point (the private pieces of 

information) in the plane, S ,  containing Vd and Vi. On the other hand, 

in (b), q = 21° since Vd is 2-dimensional. S is 3-dimensional in this 

case, so  that the private pieces of information need only be = 30 bits 
in size. Vd could also be chosen to be 5-dimensional (over GF(24)) in 

Consequently = 40 bits1 of infor- 

1. If the constructions are in AG(n,q), then the information content of the private pieces  of 
information will be equal to nlogZ(q). 
(S"+'-l)/Cq-l) instead of $, so that the number of bits required to spec i fy  a point w i l l  be 
larger than n108~(q). 

If S - Fx3cn.q) the number of points in the space is 
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which case S would be 6-dimensional and the private pieces of  informa- 

tion would consist of = 24 bits. This is the most economical construc- 

tion possible for this example i n  an affine geometry since if Vd were 
made to be 10-dimensional (over GF(22)) there would only be four points 

on a line. On the indicator line Vi, one of these would have to be the 

point p. Hence, it would be impossible to assign four distinct points 

as the private pieces of information, each of which would also have to 

be distinct from p ,  as required in the specification of the desired 

shared control. 

t h i s  case there are five points on each line. 

more economical of information-saving epsilon more than one bit. 

ever, the first point that we wanted to make with this example should be 

clear; namely, that even after the indicator Vi has been chosen, the 

designer may still have a choice of  vd to make depending on considera- 

tions other than just the specification of Pd and I’. 

The scheme could just be fitted into PG(11,2*) since in 
This would be slightly 

How- 

A more interesting freedom exists in the choice of Vi in the first 

place. 

threshold scheme) there are infinitely many choices for Vi. All that is 

required is that there be at least four distinct and proper subspaces of 

Vi any two o f  which span Vi and no one o f  which lies on the specified 

point p in Vi. 

points on a line containing at least five points. 

low-dimensional possible choices for Vi. 

Even for this very simple concurrence scheme (r a 2-out-of-& 

The smallest such example consisted of four distinct 

Figure 2 shows three 

P 

Figure 2 

(a) we have already discussed at length, 

information are four lines in the plane Vi, no one of which lies on the 

point p (they need not be concurrent as shown). In ( c )  the private 

pieces of information are four  pairwise skew lines in the 3-space vi, no 

In (b) the private pieces of 
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one of which lies on the point p. 

choices for the space Vi and associated spanning set of subspaces-what 

isn't obvious is why the designer would ever chose to use anything other 

than the minimal dimensional realization of r .  To illustrate this, one 

must consider more complex concurrences than simple threshold schemes. 

The treatment of these more general-and complicated-concurrence 

schemes is the primary objective of this paper, so we will defer the 

discussion of these considerations until later. 

we wanted to make with this example was to illustrate the freedom of 

choice for Vi which is also available to the designer of a shared 

control scheme. 

Obviously there are infinitely many 

The second point that 

We should remark at this point, that in this paper we will only be 

concerned with unconditionally secure perfect monotone geometric shared 

secret schemes. 

The Geometry of Concurrence Schemes 

When there are only two partici7ants in a shared control scheme, 

there are only two types of control possible: 

either one of them to initiate the controlled action unilaterally, or 

else it requires the concurrence of both of them to do so.  The first 

situation corresponds to two persons knowing the combination to a con- 

ventional safe so that either of them can open it, while the second 

corresponds to the U.S. military's common usage of safes with two 

separate combination locks for securing critical command and control 

information. In this case, two responsible officers each know the 

combination to one and only one of the locks, both of which must be 

unlocked in order for the safe to be opened. 

either it is possible for 

Our conventions will be to represent participants with capital 

letters A ,  B, . . . ,  etc., and to use standard logical notation, ( - 1  to 
denote conjunction and + to denote or, to express concurrences. 
case of two participants, n - 2 ,  we therefore have the pair of concur- 

rence schemes: 

For the 

~ - A + B  and r-AB . 

These may be represented graphically 



221 

1. A + B  A .  e B  

2. AB A-B 

Figure 3 .  

with the edge AB in the right-hand figure indicating that A and B 
(denoted by A B or AB) must concur in order for the controlled event 

to be initiated. 

For n = 3 ,  the situation is somewhat more interesting since in this 

case there are five possible equivalence classes of concurrence schemes 

(up to a permutation of the labels for the participants): 

r 
B 

A .  . C  
. 

1. A + B + C  

2. A B + C  

3. A B + A C  

4. A B + A C + B C  

Figure 4 .  

L 
A 

The unlabeled graphs in the right-hand column, Gy, correspond to 

equivalence classes of concurrence schemes. The concurrence schemes 

shown in the column, I', are the specific member of the class obtained 

with the indicated labeling for the participants. 

Observation: There is a natural one-to-one correspondence between 

the set of isomorphism classes of monotone concurrence schemes involving 

n participants and the set of hypergraphs on n vertices; subject to the 

condition that no hyperedge properly contains any other edge of the 

graph. To see this, label the vertices with the participants and 

include as an edge in G any subset, C ,  of participants that appears in 

the concurrence scheme r ,  i.e., C c r .  Conversely, given a hypergraph 
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G, the associated concurrence scheme r is simply an enumeration of the 
edges of G. 

convenient representation for the equivalence classes of concurrence 

schemes, independent of a particular labeling. 

The utility o f  this correspondence is that it provides a 

represents a 

description. 

2-out-of-4 threshold scheme which already has a concise 

However 

represents a concurrence scheme in which any pair out of a set of three 

participants, in concurrence with a specified fourth participant, can 

initiate the controlled action. The fourth participant has a kind of 

veto power in the sense that his input is required in order for the 

controlled event to be initiated (all three of the other participants 

together cannot initiate the controlled event). 

this absolute veto power, he cannot unilaterally initiate the controlled 

action not even in concurrence with one of the other participants. 

application for this sort o f  shared control might very reasonably arise 

in connection with a treaty controlled action, say between the U.S. and 

three of its allies where the U.S. wants to retain the right to veto the 
action, but the allies wish to be guaranteed that at least t w o  of them 

must agree before the event can be initiated. The reader can now appre- 

ciate the utility of  the graphical representation which concisely 

expresses everything that has been said about this concurrence scheme. 

However in spite of  

An 

Figure 5 shows the twenty concurrence schemes possible for four 

participants. 

each class corresponding to the labeling of vertices shown in 1. 

schemes with concise descriptions are 1, 11, 19 and 20 corresponding to 

(I,&), ( 2 , 4 ) ,  (3,4) and ( 4 , 4 )  threshold schemes, respectively. Many of 

the others have no concise description as we have already seen for 

concurrence scheme number 18. 

The column headed r shows a canonical representative of 
The 
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r 
~ 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

0. 

9. 

10. 

11. 

12. 

13. 

A + B + C + D  

A B + C + D  

A 0  + CD 

AB + BC + D 

AB + BC + CD 

AB + BC + AC + D 

AB + AC + AD 

AB + BC + CD + AD 

A B +  B C + A C + C D  

A B t A C + A D + B C + C D  

AB+AC+AD+BC+BD+CD 

ABC + D 

ABC + AD 

Figure 5 .  
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r 'r 
0 

14 ABC + AD + BD 
C D 

15. ABC + AD + BD + CD 

16. ABC + ABD 

17. 

18. 

19. 

20. 

ABC+ABD+CD 

ABC+ABD+ACD 

ABC+ABD+ACD+BCD 

ABCD 

Figure 5. (cont'd) 

A 
A 

Constructing Geometric Shared Secret Schemes 

If the desired concurrence scheme is simple enough, a geometric 
shared secret scheme realizing it may be obvious. 

case for the two schemes involving only two participants: 

This is certainly the 

r s r  
1. A+0 4 B  

P 

A B  
- P  

Figure 6 

Geometric shared secret schemes realizing the five possible concurrence 

schemes with three participants are almost equally obvious: 
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r ’r 
1. A+B+C 

2. AB+C 

3. AB+AC 

4. AB+AC+BC 

5. ABC 

Figure 7 

A0.C 

P 
0 

A 0  
c-P 

A 0,C 
P P  

In general, this will not be the case, though, and formal means for 

constructing geometric schemes are needed. For example, it is far from 

obvious how to construct shared secret schemes realizing several of the 

concurrence schemes shown in Figure 5. To verify this claim, the reader 

may wish to try to construct schemes realizing concurrences 13, 14 and 

17 before reading further. 

We will use concurrence scheme #5 from Figure 5 as an example 

scheme was first discussed by Benaloh and Leichter [l] who used it to 
prove that not every concurrence scheme (which they call an access 

structure) can be realized by an ideal secret sharing scheme.2 

it isn’t too difficult to devise a geometric shared secret scheme 

realizing r ,  a construction certainly isn’t obvious either. Assume that 

Vi is 3-dimensional, then one possible scheme is: 

This 

While 

2. A shared secret scheme is s a i d  to  be i d e a l  if a l l  of the private pieces of information come from 
the same domain as the secret; i.e., i f  they are all points in the same space. 
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Figure 8 .  

The four points 1, 2, 3 and 4 are chosen to be in general position 

and hence they define four planes in Vi, none of which may lie on the 

point p. A and D are given points 2 and 4 ,  respectively, as their 

private pieces of information. 

the triples of points 1, 3 and 4 and 1, 2 and 3 ,  respectively. Clearly 

the subspaces held by A and B or by B and C ,  or by C and D span Vi. 

Equally clearly Vi is not spanned by the subspaces held by any other 

pair o f  the participants. 

construction does not lie on p. 

held by 8 ,  etc. 

lies in two planes neither of which lies on p, and hence the line does 

not lie on p either. Therefore, the configuration shown in Figure 6 is 

a perfect monotone geometric shared secret scheme realizing the Benaloh- 

Leichter concurrence. 

B and C are given the planes lying on 

A ' s  point is in the plane held by C, which by 

Similarly, D ' s  point is in the plane 

Points 2 and 4 (held by A and D) define a line that 

G y  can be redrawn to emphasize its symmetry 

It is easy to see that G y  and Sy have the same symmetry, i.e., they have 

the same automorphism group. This is also true for the other small 

examples (of Gy,  Sy pairs) we have seen thus far. It seems plausible, 

and one might be tempted to conjecture, that for any concurrence scheme 

r ,  Gr and Sy will have the same automorphism group. 
it would be a powerful tool for the construction of Sy. 

If this were true 

Unfortunately, 
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the statement is not true as the following alternate geometric realiza- 

tion of  the Benaloh-Leichter concurrence shows: 

Figure 9 

The assignment of,the private pieces of information are: 

line defined by points 1 and 2--4,2>, B the line < 3 , 4 > ,  C the plane 

<1 ,2 ,3>  and D the line < 1 , 4 > .  It is easy to see that this is also a 

perfect monotone geometric shared secret scheme realizing the Benaloh- 

Leichter concurrence, but completely Lacking the symmetry of G y .  

A is given the 

The primary objective in this section is the statement and illustra- 

tion of several observations about shared secret schemes based on 

properties of the associated concurrence schemes. We will dignify 

these-because of their usefulness-by calling them theorems, although 

their validity is generally self-evident. 

Theorem 1. 

is disjoint, then a geometric shared secret scheme, Sy, can be con- 

structed as the union of independent geometric shared secret schemes 

realizing each of the components-all indicating the same point p in vd 

however. 

If the hypergraph Gy representing the concurrence scheme r 

Theorem 1 can be applied to concurrence scheme 3 in Figure 5: 

~ - A B + C D  . 

Since there are two components to G y ,  there will be two indicators in a 

shared secret scheme constructed using Theorem 1; both indicating the 

point p in Vd, of course. 
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Figure 10. 

It 

on 

is interesting 

y a single ind 

to compare this simple realization to one involving 

cator subspace; i.e., to a construction made without 

the aid of Theorem 1. 

I 1 

4 & 2  3 

~ 

Figure 11. 

We know of no simpler realization of l? using only a single indicator. 

The simplification resulting from applying Theorem 1, while illustrated 

by this small example, can be dramatic for more complex concurrence 

schemes. 

It should be remarked at this point that Ito, Saito and Nishizeki 

[ 6 ]  first proved that every concurrence scheme can be realized by a 

perfect (nongeometric) shared secret scheme using a construction similar 

to those made using Theorem 1. 

normal form (a sum of products of the literals), they construct an 

independent shared secret scheme-revealing the same secret, of course- 

for each term (product) in r .  For the example just discussed, they 

would also construct the Sy shown in Figure 10. 

structive technique would apply equally well to the concurrence 

Given a concurrence r in disjunctive 

However, their con- 
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whose hypergraph representation is not disjoint so that our Theorem 1 

would not apply. Since concurrence schemes are drawn from the power set 

of the set of n participants, the cardinality of r can be exponential in 
n, hence Ito, Saito and Nishizeki's construction is more in the nature 

of an existence proof (for perfect shared secret schemes) than a practi- 

cal method of construction. 

Theorem 2. 

which r can be factored into the product of disjoint logical expressions 
is the space spanned by the disjoint geometrical realizations of the 

factors. 

The geometric realization for a concurrence scheme r in 

Theorem 2 can be applied to concurrence scheme 13 in Figure 5 ,  which 

is one of those for which the reader was challenged earlier to construct 

a shared secret scheme: 

r = ABC + AD = A(BC + D) 

Applying Theorem 2, we easily construct one such shared secret scheme: 

Figure 12. 

Theorem 3. 

I' can be factored into the sum of the products of expressions disjointly 

partitioning the variables, can be realized as the union of geometric 

realizations of the form given by Theorems 1 and 2. 

The geometric realization for a concurrence scheme in which 

Theorem 3 can be applied to concurrence scheme 14 in Figure 5 (the 

second of the challenge schemes) 

r - ABC + AD + BD - ( A B ) C  + (A+B)D . 



230 

One of the shared secret schemes that can be constructed using Theorem 3 

is : 

Figure 13. 

Theorem 4 .  

Gy = Kk:l (the complete hypergraph consisting of  all ($) k-edges on I 

vertices) can be realized by a set of I linearly independent points in a 

(k-1)-dimensional indicator space. 

The concurrence scheme r whose hypergraph representation is 

Proof: 

pants, i.e., it is a simple (k,l) threshold scheme. Given P linearly 
independent points in a (k-1)-dimensional space, no subset of j, 

2 5 j 5 k-1, of the points can lie in a (3-1)-dimensional subspace. 

Therefore, since Vi is only (k-1)-dimensional, every subset of k of them 

must span Vi. I 

r consists of all of the ( 5 )  k element subsets of the l partici- 

Theorem 4 can be applied to concurrences 11 and 19 in Figure 5 .  The 

construction of S 1 1  (four collinear points) is obvious. The construc- 

tion of S1g is somewhat more interesting, consisting in this special 
case (n - 4 )  of four points in general position in a plane, Vi, no pair 

of which are collinear with the indicated point p. 

Figure 14. 

The curve !J lying on the four points A ,  B, C and D is a conic, i.e., for 

a field of odd characteristics a set of points in Vi no three of which 

are collinear. The same construction would hold f o r  any ( 3 , I )  threshold 
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scheme. 

if it doesn't, since each secant of n through p can only lie on one 
point of n that can be used as a private piece of information. 

The maximum value for R would be q if p lies on R and (q+1)/2 

Theorem 5 .  

are two or more independent and isomorphic points, all of these points 

can be identified in a reduced hypergraph representing the same concur- 

rence scheme. 

If in the hypergraph representing a concurrence scheme there 

Theorem 5 is probably the most useful of all of the results given 

here. 

We will use number 10 to illustrate its utility: 

It applies to many of the concurrence schemes shown in Figure 5 

r = AB + AC + AD + BC + CD 

Figure 15 

Vertices B and D are independent and isomorphic, and hence by Theorem 5 

can be identified. Consequently, Gy can be replaced by the simpler 

Figure 16 

to which Theorem 4 applies. 

is : 

One of the resulting shared secret schemes 

A C B,D - - - .  - -  

Figure 17. 

Almost as useful as Theorem 5 itself, is the following Corollary which 

allows a designer to add new participants to an existing shared secret 
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scheme in those cases where the new participants are intended to have 

the same capability as one (or more) of the existing participants. 

Corollarv: Given a realization of a concurrence scheme, any share can 

be given to as many participants as desired-all of  whom will be 

independent and have isomorphic capabilities. 

Figure 18 shows a geometric shared secret scheme realizing each of 

the concurrence schemes shown in Figure 5. 

are obvious a priori, others-constructed with the assistance of various 

of the theorems just given-are obvious after the fact, while a few may 

not be obvious at all. 

Some of these constructions 

r s r  
1. A i 0 c C i D  

2. A 0 i C i D  

3. A0+CD 

4. AB+BC+D 

5. AB+BC+CD 

6. AB+AC+BC+D 

7, A0 + A C i  AD 

8. AB+ BC+CD+AD 

Figure 18. 

4 B G D  

P 
. 

A B  

1 2  
C.D ----C---er P 

> p  C 

h C  B 
D-p 

1 2 

4c B,D 
-P 

1 2 
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r 'r 

9. 

10. 

11. 

12. 

/E/p AB+BC+AC+CD 

A 8 GD 
AB+AC+AD+BC+BD P P  

A B C D  
AB+AC+AD+BC+BD+CD - - _  c . P  

ABC+D 

13. ABC+AD 

14. ABC+AD+BD 

15. 

16. 

17. 

ABC+AD+ BD 

ABC+ABD 

ABC+ABD+CD 

P 

Figure 18. (cont'd) 
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r s r  

18. ABC+ABD+ACD 

19. ABC+ABD+ACD+BCD 

20. ABCD 

Figure 18. (cont'd) 

The constructions for Sy given in Figures 6 ,  7 and 18 support (and 

prompt) the following conjecture. 

Conjecture: 

perfect geometric shared secret scheme. 

Every monotone concurrence scheme can be realized by a 

Remark: Ito, Saito 2nd Nishizeki [ 6 ]  proved that every concurrence 

scheme can be realized by a perfect shared secret scheme, as did 

Benaloh-Leichter [l] using a different technique. The conjecture is 

that for every concurrence scheme I?, it is possible to choose a space V i  

and a collection of subspaces of Vi that can be assigned to the 

participants to realize r in a geometric shared secret scheme. 

The Consesuences of Trust 

Thus far in this paper, and without exception in the literature on 

shared secret and/or shared control schemes, it has been assumed that 

the participants will not divulge their private pieces of information- 

except perhaps at the time the controlled event is initiated. This is 



not the same as assuming that the participants are unconditionally 

trustworthy, and in fact several persons have studied the problem of how 

to make the functioning of a shared control scheme be reliable when 

(some) participants may not be [ 2 , 3 , 4 , 5 , 7 , 8 , 9 ] .  Realistically, though, 

one must accept the possibility that a participant may share what he 

knows with whomever he trusts. 

surprising (to the key distribution center who set up the secret sharing 

scheme with a desired concurrence in mind). For example, i n  the two 

participant scheme to realize r = AB (2 in Figure 3 )  if A trusts B and 

tells him his private piece of information, B can thereafter unilater- 

ally initiate the controlled action. This isn't what the key distri- 

bution center had in mind, since it was his intention that A and B would 

have to concur at the time that the controlled event is to be initiated. 

However, there is no notion of simultaneity in the logic of  shared con- 

trol, only a specification o f  which private pieces of information will 

be needed to initiate the controlled action. In the example, A ' s  input 

is required and is present-in B's possession. In effect, A has given B 

his proxy which B can exercise whenever he chooses. Thus, even though 

the resulting control is not what the key distribution center had in 

mind, it is also not a logical surprise either. 

The consequences o f  such sharing may be 

On the other hand, consider the concurrence scheme r = AB + AC + AD 
(7 in Figures 5 and 8 ) .  

this case is that A must concur with at least one of B, C or D in order 

for the controlled event to be initiated. 

similar example in the setting of a treaty concrolled action where A 

(say the U.S.) retains a veto power over the action, but in spite of 

this absolute veto capability can't unilaterally initiate the controlled 

action. 

least one of  the three other signatories to the treaty. 

A trusts B and C together and shares his private piece of information 

with them in such a way that they can jointly reconstruct his input to 

the shared control scheme. Neither B nor C alone can initiate the con- 

trolled action. The unexpected result though is that B, C and D 

together could then initiate the controlled action. 

with a new concurrence scheme 

The intent of the key distribution center in 

We have already discussed a 

In the present example, this requires the concurrence of at 

Now assume that 

r has been replaced 

r '  = AB + AC + AD +. BCD 
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where the three participants B, C and D can act without needing A ' s  

concurrence. This consequence of A ' s  trust of B and C is more sur- 

prising than the result in previous example, since there a proxy (trust 

relationship) was used to eliminate a participant from an authorized 

subset of r .  Here it is used to replace a participant in an authorized 

concurrence with a subset of  the other participants. 

new (and unexpected) sets are capable of initiating the controlled 

action. In both cases, a literal (A in both of these examples) is 

replaced with a trusted subset (BC). In the first case, a participant 

is eliminated as a result, while in the second, one participant is 

eliminated and two are added: 

The result is that 

ABC + BCBC + BC and AD -+ BCD . 

The basic notion (and problem) should be clear from these two small 

If one or more of the participants trust some collections o f  examples. 

the other participants, i.e., if they share their private pieces of 

information in such a way that subsets that they trust can jointly act 

in their stead the result may be that quite different concurrences than 

were originally intended (r) may be able to initiate the controlled 
action. 

When a key distribution center sets up a shared control scheme Sy to 

realize a concurrence r ,  he must implicitly accept all of the concur- 
rence schemes reachable from as a result of the possible trust rela- 

tionships between the participants-since he can't know and can't con- 

trol who trusts whom. Incidentally, there are concurrences that are not 

reachable from a given concurrence; for example r = AB is.not reachable 

from I? = A + B, since if both participants are initially able to uni- 
laterally initiate the controlled action, nothing that can be done by 

either participant can lessen the other's capability. 

relationships can only increase the capability of groupings of partici- 

pants, and can never take capability away from a subset C that pre- 

viously had it (C c I?), a lattice of concurrence schemes can be defined, 

in which the nodes are concurrence schemes and the edges are trust rela- 

tionships. 

made a conjecture as to the structure of this lattice-essentially 

equating the lattice of concurrence schemes r and the geometric lattice 
of the hypergraph representations of these schemes Gr. 

Since trust 

At Crypto'90 in the lecture on which this paper is based we 
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In the case of two participants, AB dominates A + B, and the trust 
relationship to reach A+B from AB is that A must trust B and vice versa. 

For three participants the situation is more complex. Obviously ABC 

dominates all other concurrence schemes and A+B+C is dominated by 

everything else. 

however requires some analysis. 

trusts B and C jointly (meaning that A can be replaced by BC), we have 

The ordering of the other three concurrence schemes 

AB+AC dominates AB+AC+BC since if A 

and 
AB + AC -+ BCB + BCC + BC 

r '  - AB + AC + BC . 

Similarly AB + AC + BC dominates AB+C, requiring that A trust C. 
participant concurrence schemes therefore are ordered as shown in Figure 

Three 

19. 

1. AEC 

r 

3- AB + AC + 0C 

4. A B + C  

5. A + B + C  

Figure 19 

A 

b 

* b  

The geometric latice (of hypergraphs) in which order i s  determined 

by set (edge) inclusion has a different order however: 
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1. ABC 

2. A B + A C + B C  A 
3. AB + AC L 

Figure 20 

The reversal of the order of  AB+AC+BC and AB+AC in these two lattices is 

a counterexample to the equivalence of the geometric lattice and the 

lattice of concurrence schemes that had been conjectured. 

sent, we are unable to even conjecture what the relationship between the 

two lattices may be. 

participants. The lattice of concurrence schemes is still being inves- 

tigated for even this small case. Instead of the (refuted) conjecture, 

we instead, ask the fundamental questions (for shared secret and/or 

shared control schemes). 

At the pre- 

Figure 21 shows the geometric lattice for three 

Question 1. Given a shared secret scheme r what other shared secret 
schemes are reachable from r as a result of trust relationships that may 
exist among the participants. 

The next question is closely related, but not necessarily the same 

Question 2. Characterize the lattice of concurrence schemes for n 

participants. 



239 

Figure 21. 

The reason t h a t  we say t h a t  Questions 1 and 2 may not  be equivalent 

is  t h a t  i t  could be the case tha t  concurrence scheme r2 is reachable 
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from concurrence scheme I'1, and r3 from I'2, but that there is no set of  

trust relationships that reach r3 directly from rl .  
The answers to both of these questions are of vital importance to 

the discipline of shared capability since a key distribution center 

setting up a shared control scheme I' must-implicitly-accept every 

scheme reachable from r as well. 
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