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1. Introduction and definitions 

hfomdly, a secret sharing scheme is a method of sharing a secret key K among a finite set of 

participants, in such a way that certain specified subsets of participants can compute a key. 
Suppose that P is the set of participants. Denote by F the set of subsets of participants which we 

desire to be able to determine the key; hence r E; 2 P. I- is called the access sffucfure of the secret 

sharing scheme. It seems reasonable to require that r be monorune, i.e. 

ifBE randBGCsP,thenCo F’. 

For any To c Zp, define the cioswe of TO to be 

cl(ro)= (C: BE I-andBsCsP]. 

Note that the closure of any set of subsets is monotone. 

Let K be a set of 4 elements called keys. and let S be a set of s elements called shares. Suppose 
a dealer D wants to a share the secret key K E K among the participants in P (we will assume 

1 This work performed at Sandia National Laboratories and supported by the U. S. Depafiment of 
Energy under contract number DE-ACQ4-76OP00789 

2 Research supported by NSERC operating grant A9287 and by the Center for COmmiCation 
and Information SclenCe, University of Nebraska 

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPT0 ‘90, LNCS 537, pp. 242-252, 1991. 
0 Springer-Verlag Berlin Heidelberg 199 1 



243 

that D G P). He does this by giving each participant a share. We say that the scheme is a perfect 
scheme with access structure r if the following two properties are satisfied: 

1) if a subset B of participants pool their shares, where B E r, then they can determine the 
value of K. 

2 )  if a subset B of participants pool their shares, where B P r, then they can determine 
nothing about the value of K (in an information-theoretic sense), even with infinite 
computational resources. 

We will depict a secret sharing scheme as a matrix M ,  as was done In [ 5 ] .  There will be IPI + 1 
columns. The first column of M will be indexed by D, and the remaining columns are indexed 
by the members of P. In any row of M, we place a value of the key K in the column D, and a 
possible list of shares corresponding to K in the remaining columns. When D wants to distribute 
shares corresponding to a key K ,  he will choose at random a row of M having K in column D, 
and distribute the shares in that TOW to the participants. 

With this matrix representation, it is easy to describe conditions 1) and 2) above. Condition 1) 
becomes the following. 

1') if B E r and M(r ,  b) = M(r', b) for all b E B ,  then M(r ,  D) = M(r', D). 

We will replace Condition 2) by a condition which Brickell and Davenport [5] call "having no 
probabilistic information regarding the key". This condition is the following: 

2') if B 
such that 

r andf B -+ S is any function, then there exists a non-negative integer hcf, B )  

independent of the value of K. 

The information rate of the secret sharing scheme is defined to be p = log;! q f log2 s. It is not 
difficult to see that q 5 s in a perfect scheme, so the information rate p 2 1. If a secret sharing 
scheme is to be practical, we do not want to have to dismbute too much secret information as 
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shares. Consequently, we want to make the information rate as close to 1 as possible. A perfect

secret sharing scheme with information rate p = 1 is called ideal. In Example 1.1, we depict an

ideal secret sharing schemew

Example 1.1 Let P = [a, b, c) and let T = {{a,b}, {b,c}, [a, b, c}}. The following is a

PS(r, 1,3).
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Note that if a has share sa and b has share st>, then they can compute the key as Sb - sa

(modulo 3). Similarly, b and c can compute the key as Sb - sc (modulo 3). However, a and c

together have no information regarding the key, since sa = sc in every row.

We will use the notation PS(F, p, q) to denote a perfect secret sharing scheme with access

structure T and information rate p for a set of q keys.

In the special case where the access structure f = (8 c P: LSI £ t), then the secret sharing

scheme is called a (:, w)-threshold scheme, where w = IPI. Threshold schemes have been

extensively studied in the literature; see Simmons [9] for a comprehensive bibliography.

Secret sharing schemes for general access structures were first studied by Ito, Saito and
Nishizeki in [6]. They proved that any monotone access structure can be realized by a perfect
secret sharing scheme. A more efficient construction was given by Beneloh and Leichter in [1].
In both these constructions, however, the information rate is exponentially small as a function of
IPI.
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Some constructions for ideal schemes were given by Brickell [4]. More recently, ideal schemes 
were characterized by Brickell and Davenport [ 5 ]  in terms of mawids. 

2. Ideal secret sharing schemes 

In this section, we will discuss ideal secret sharing schemes in the case where the access 
structure consists of the closure of a graph. In this paper, graphs do not have loops or multiple 
edges; a graph with multiple edges will be termed a mulrigraph. If G is a graph, we denote the 
vertex set of G by V(G) and the edge set by E(C). G is connecred if any two vertices are joined 
by a path. The complete graph K,, is the graph on n vertices in which any two vertices are joined 

by an edge. The compleIe multipartire graph K,,l,nZ,,.,,n, is a graph on ni vertices, in which 

the vertex set is partitioned into subsets of size ni (1 2 i I t ) ,  such that vw is an edge if and only 
if v and w are in different subsets of the partition. An alternative way to characterize a complete 
multipartite graph is to say that the complementary graph is a vertex-disjoint union of cliques. 

i = l  

For a graph C, define PS(G, p. q)  to be PS(T, p, q),  where r = cl(E(C)). 

The following result characterizing which graphs admit ideal secret sharing schemes was proved 
in [5]. 

Theorem 2.1 [5, Theorems 4 and 51 Suppose G is a connected graph. Then there exists a 
PS(G, 1, q) for some q if and only if G is a complete multipartite graph. 

Theorem 2.1 requires that G be connected. The cases when G is not connected are easily 
handled by the following easy observation. 

Theorem 2.2 Suppose G is a graph having as its connected components Gi, 1 2 i 5 t. Suppose 
that there is a PS(Gi, p, q),  1 5 i I t. Then there is a PS(G, p. 4). 

We can easily prove the constructive half of Theorem 2.1 by using a couple of simple 
constructions. Suppose C is a graph and v E V(G), We define a graph G(v)  by replacing v by 
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two non-adjacent vertices v l  and 172, such that vjw is an edge of G(v)  if and only if vw is an edge 
of G ( i  = 1,2). We say that G(v) is constructed from G by splirting v.  

Theorem 2.3 Suppose C is a graph and there exists a PS(G, p, q). Then for any vertex V of G, 
there exists a PS(G(v), p, q). 

Proof: Replace column v of the matrix M by two identical columns v l  and ~ 2 .  

The next theorem generalizes the Shamir construction for a (2,2)-threshold scheme [7]. It uses a 
structure from combinatorial design theory called an orthogonal array. An orthogonal array 
OA(k, n )  is an n2 x k array, with entries chosen from a symbol set of n elements, such that m y  
pair of columns contains every ordered pair of symbols exactly once. 

Theorem 2.4 Suppose r is a positive integer, and there exists an orthogonal m a y  OAO + 1, Q). 

Then there is a PS(KI, 1, q). 

Proof We will use the OA(r + 1, q)  as the matrix M representing the secret sharing scheme. 
The first column is indexed by D ,  and the remaining t columns are indexed by the participants. 
Let Pi and PI be two participants. In the two corresponding columns, every ordered pair of 
shares occurs exactly once. Hence, property 1') is satisfied. If we consider any one participant 
PL, any share s =f(P,), and any key K,  there is a unique row of M such that s occurs in column 
Pi and K occurs in column D. Hence, property 2') is satisfied with h(f, Pi ) = 1. 

Corollary 2.5 Suppose t is a positive integer, q is a prime power, and 2 f .  Then there is a 
wKl ,  1.4).  

Proof It is well-known that an OA( t  + 1, 4) exists if is a prime power and 4 2 t (e.g., see 
[21). 

We can now prove the constructive half of Theorem 2.1 as a corollary of these constructions. 

Corollary 2.6 IS, Theorem 51 Suppose q is a prime power and q 2 f .  Then there is a 
PS(Kn,,n, ,..., n p  174). 

Proof: Start with a PS(Kt, 1, q)  and split vertices until Knl,nZ,...,n, is obtained. 
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If we consider the possible graphs on at most four vertices, we find that all of them admit ideal 
secret sharing schemes, with two exceptions. We have the following consequence of the 
Theorems 2.1 and 2.2. 

Theorem 2.7 If G is a graph and IV(G)I 5 3, then there exists a PS(G, 1, q)  for some q, unless 
G is isomorphic to one of the following two graphs: 

p3 H 

Remark: It was first shown by Beneioh and Leichter [l] that there does not exist a 
PS(P3, 1,q). where P3 is the path of length 3, for any q. 

In fact, we can be more precise about the values of q admitted in Theorem 2.7. 

Theorem 2.8 If G is a connected graph, IV(G)I 5 4 ,  and G is not isomorphic to P3 or H ,  then 
there exists a PS(G, 1, q)  for all integers q E Q(G), where Q(G) is defined in Table 1. 

Proof: It is known that there exists an OA(5, 4 )  if q 2 4, q # 6, 10; there exists an O A ( 4  4)  if 
q 2 3, q f 6; and there exists an OA(3, q )  if q 1 2  (see [2] for proofs). 
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Table 1 

3. Improved lower bounds on the information rate 

We now turn to the construction of perfect secret sharing schemes in the cases where ideal 
schemes do not exist. First, we give a construction that shows that the existence of a secret 
sharing scheme PS(T, p, y) for a single value of 4 implies the existence of an infinite class of 
schemes with the same information rate. 

Theorem 3.1 Suppose there is a PS(T, p, 41) and a PS(T, p, 42). Then there is a 

PS(T, P, 4142). 

Corollary 3.2 Suppose there is a PS(T, p, 4) .  Then, for any positive integer n, there is a 
p w .  p, 4") .  
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If G is a graph, then G1 is said to be a subgraph of G if V(G) E V(Gj) and E(G) E E(G1). If 
vi S V(G), then we define the graph G[Vl] to have vertex set V1 and edge set (uv E E(G), 
U, v E V 1 ) .  We say that G[Vi] is an induced subgraph of G.  The following theorem is 
obvious. 

Theorem 3.3 Suppose G is a graph and C1 is an induced subgraph of G .  If there is a 
PG(G1, p,  q), then there exists a PS(G1, p, 4). 

Next, we prove some powerful "decomposition" constructions. 

Theorem 3.4 Suppose G is a graph, and GI and Cz are subgraphs of C such that E(G) = E(G1) 
that there is a PS(G1, p1, q )  and a PS(G2, p2, 4). Then there is a 

p=- P1P2 

P 1 +  P2 

This theorem can be generalized as follows. 

Theorem 3.5 Suppose G is a graph and GI, ... , Gt are all subgraphs of G. such that each edge 
of G occurs in at least one of the Gj's. For 1 5 i < r, suppose that there is a PS(Gi, pi, q). For 
every vertex v, define 

1 
p(v) = XI' 

[ I :  v E G i }  

Then there is a PS(G, p, q), where p = min{p(v): v E V(G)).  

Corollary 3.6 Suppose G is any graph with maximum degree d, and q 2 2 is any inreger. Then 
there is a PS(G, 1 / d, 9).  

Proof: Define each Gi to be an edge of G, and apply Theorem 3.5. 
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Remark:  Corollary 3.6 can also be proved by the "monotone circuit" construction of Beneloh 
and Leichter [ 11. 

We can now obtain schemes for the two graphs P3 and H from the previous constructions. 

Corollary 3.7 There exist schemes PS(P3,0.5, q)  and PS(H, 0.5, q)  for all q 2 2. 

Proof: Existence of a scheme PS(P3,  0.5, q )  follows from Corollary 3.6. Existence of 
PS(H, 0.5, (7) follows from decomposing H into two edge-disjoint paths of length two, each of 
which admits an ideal secret sharing scheme, and applying Theorem 3.5. 

We now establish a general lower bound improving that of Corollary 3.6. 

Theorem 3.8 Suppose G is a graph of maximiurn degree d, and denote e = rd 121. Then there is 
a constant p 2 1 / (e + 1) such that there exists a PS(G, p, q)  for all q t 2.  

Proof: Let X i  (1 5 i 5 2t) be the vertices in V(G) having odd degree (any graph has an even 
number of vertices of odd degree). Construct G' from G by adding f new edges X t i - I  x2i 
(1 5 i I t). Observe that G'  may contain edges of multiplicity two, in which case it is a 
multigraph. Every vertex of G' has even degree; hence G' is Eulerian. Let C be a (directed) 
Eulerian tour of G'. For every vertex v E V(G) define C, to consist of the edges of C n E(G) 
for which v is the head. Then the subgraphs G, (v E V(G)) form an edge-decomposition of G. 
Also, each G, is isomorphic to a complete bipartite graph Kl ,w .  where 

no = d o / 2 ,  if v has degree & in G and & i s  even 
nu = r& I 21 or L& I 21, if v has degree do in G and do is odd. 

Hence, each G,  admits an ideal secret sharing scheme for any q t 2 (Corollary 2.6). Now, 
apply Theorem 3.5. For every vertex v E V(G), we have 

p(v) = 1 / (eg + l) ,  if v has even degree dg in G and eg = & / 2, 
p(v) = 1 / eo or 1 / (eo + 11, if v has odd degree do in G and eg = [do / 21. 

I t  follows that the resulting secret sharing scheme has rate p = 1 / e or 1 / (e  + I) ,  where G has 
maximum degree d and e = rd / 21. Such a scheme can be constructed for any 4 t 2. 
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The last topic of this section is a direct construction for a secret sharing scheme for Qj, the cycle

of size 6. Note that there is no ideal scheme in this case.

Example 3.1 The following is a PS(Q;, Iog3 2, 2), where V(C<j) = [a, b, c, d, e,f] and E(C<$)

= { { a , b ) , [ b , c ) , l e d ] , { d , e } , [ e , f ] , If, a } } .
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Note that if a has share sa and b has share j(,, then they can compute the key to be 0 if sb = sa,
and 1 otherwise. However, a and c together have no information regarding the key, since for
every ordered pair (sb, sc) that occurs, there is exactly one row where the key is 0 and one row
where the key is 1. The analysis for other pairs of participants is similar to these arguments.
The information rate p = Iog2 2 / Iog2 3 = Iog3 2 = 0.6309298.

Remark: Example 3.1 also provides us with a PS(Pj, Iog3 2, 2}, since P3 is an induced
subgraph of Q .
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