
Collective Coin Tossing Without Assumptions
nor Broadcasting

Silvio Micali Tal Rabin

1 Introduction

To obtain security, one needs to utilize many resources. Among these are
one-way functions, physically secure communication channels, and —though
less well known— broadcasting.

We will argue, though, that this resource should not be taken for granted
in a cryptographic scenario, and that actually should be removed. We will
show that this can be done thanks to some recent developments in the field
of distributed computation and actually hope to generate more awareness
about this field for our cryptographic work.

We focus on one such a primitive, collective coin flipping. Here a group of
players, some of which are dishonest, want to select a common, random and
totally unbiased bit. Our desire of having the coin totally unbiased obliges us
to dispens with cryptography, since else one would always have a miniscule
chance of guessing the relevant secret key and bias the coin. To explain how
to get perfect common coins, we need to revisit another protocol: verifiable
secret sharing.

As we shall see, along the way, we will provide a very simple proof of a
beautiful and unpublished, VSS protocol.

1.1 Verifiable Secret Sharing
Awerbuch, Chor, Goldwasser, and Micali [B.Mi86] introduced and crypto-
graphically implemented the somewhat paradoxical notion of a verifiable

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPTO '90, LNCS 537, pp. 253-266, 1991.

© Spnnger-Verlag Berlin Heidelberg 1991

254

secret sharing. This is a protocol involving a distinguished party, called
the dealer, and additional parties. called the players. Any of these parties
(including the dealer) may be malicious, and deviate from their prescribed in-
structions in an arbitrary way. Informally, the protocol consists of two stages.
In the first stage the dealer “secretly commits” to a value of its choice. In
the second stage this value is recovered, The value is secret, at the end of
stage 1, in the sense that no subset of players of suitably small size can guess
it better than at random, even if they exchange all the information in their
possession so far (which good players never do in the first stage.) The value
is committed. in stage 1, in the sense that a good player can VERIFY that
there exists a unique value 2 such that whenever stage 2 is performed, with
or without the help of the dealer. and no matter what the bad players rnighf
do, all the good players will recover x, Moreover this unique, but unknown,
value 5 is what a good dealer chose it to be.

Applications. Verifiable secret sharing is extremely useful. It is the cru-
cial subroutine of all recent completeness theorems for protocols with hon-
est majority, most notably [GoSfi\Vi86, GaHaYu87, BeGoWi88, ChCrDa88,
RaBe89, BeMiRoSO].

Below let us point out just two applications that will help us to illustrate
some future points.

1. Delayed Disclosure. Assume that the president of the United States
wants his generals to know the secret password for the Country’s nu-
clear defense system, if he is killed. Then he may execute stage 1 of
a VSS protocol when he is still alive and order his generals to execute
stage 2 only if he gets killed. As he trusts the majority of his generals
to follow his orders, the password will remain secret until he is alive.
Should he get killed, again because the majority of his generals will
participate in stage 2, the password is guaranteed to be recovered.

2. Collective Coin Flipping. Assume n parties want to agree on a common,
random bit. Then each party secretly and randomly selects a bit, and
commits herself to it using stage 1 of a VSS protocol. Once all have
done it, stage two is executed, all the committed bits are recovered and
broadcasted, and the common coin is assumed to be the sum modulo
2 of all decommitted bits.

255

In the first application, the emphasis is on an honest dealer who does not
trust any single player, or even any minority of the players: in the second
one, on an honest group of players who do not trust the dealer.

1.2 Verifiable vs Simple Secret Sharing
Secret Sharing. The earlier notion of a secret sharing was independently
introduced by Blakley [Bla79] and Shamir [Sha79]. In a secret sharing pro-
tocol with parameters n and t , a denler D possesses a secret string s. From s
the dealer computes R. other strings s l , ..., 3, -called shures- such that 3 is
unpredictable given any 5 t of the shares, but s is easily computable given
any t + 1 of the shares.

For instance, in [Shai9] the dealer randomly chooses a polynomial P of
degree t with coefficients in Z,, p prime, such that P(0) = 5 , and gives to
player i the string P (i) as his share.

The limitations of Secret Sharing. Secret sharing does not achieve
secret commitment as discussed above. For instance.

In the case of application 1, some generals may be trahitors and, dur-
ing the reconstruction of the password, may contribute wrong strings as
their shares of the secret. This will avoid that the good general recon-
struct the password! Though the password is correctably reconstructed
when given t -k 1 good shares and nothin else, all bets are off when,
together with good shares, one is given also bad ones. For instance, in
the implementation of [Shaig], t + 1 shares uniquely identify a polyno-
mial. Thus if t shares are bad out of -say- 3 t + 1, as soon one chooses
t shares, almost surely a bad one would be included and a wrong secret
reconstructed. Cycling through all possible subsets of shares of size
t + 1 (so to identify the 2t + 1 shares that define the same-polynomial)
would be impossible since it would require exponential time.

In case of application 2, every player acts as a dealer. One such dealer,
D, may co-operate with the bad players as follows. He gives them good
shares to begin with, but during reconstruction he tells them whether
they should contribute the good shares or random ones. This allows
D to bias the common coin. Assume that he wants the common coin
to come up 0. If the sum of all previously decommitted bits and his

256

own bit happens to be 0, he tells the bad players to contribute the
original share he gave them. This way the reconstruction of his secret
will proceed smoothly, and the common coin will be 0 as he wanted. If
the sum modulo 2 of all bits is 1, he tells the bad players to contribute
random strings during the reconstruction of his own bit. Thus the good
players cannot reconstruct any bit for D. Now they are in trouble no
matter what they do. If their strategy is to take the sum modulo 2 of
the reconstructed bits, they would easily allow D to bias the coin. In
fact D has two chances of having 0: one if the sum of all bits modulo
2 is 0, the other if the sum of all the bits except his own is 0. If their
strategy consists of starting again the protocol without D, again LJ
would have two chances of obtaining 0. (This interesting phenomenon
was first observed by Broder and Dolev [BrDo84] in the case of 2-people
coin flipping.)

Problem 1 could be solved by having the dealer digitally sign the shares
he hands out. but problem 2 is of no easy solution. We need verifiable secret
sharing.

1.3 Our Solution

Our protocol is the first one to simultaneously enjoy many attractive prop-
ert ies:

1. It cannot be defeated even if 1 / 3 of the players are malicious and CO-
operate with each other to disrupt it.

2. It works without one-way functions if the players communicate via safe
lines. Thus even if the bad players have infinite computing resources,
they cannot defeat it.

3. It has 0 probability of error. Thus there is absolute certainty that
the dealer’s input is committed, is secret, and will later be correctly
recovered.

4. It works in constant number of rounds.

5 . It works without broadcasting. It is enough thatevery pair of players
can exchange messages.

257

Our protocol is in fact the first VSS protocol implementable without broad-
casting. Properties 1, 2 alone were achieved by Chaum, Crkpeau, and
Damgdrd [ChCrDa88]; properties 1,2 and 3 were -independently- achieved
by Ben-Or, Goldwasser, and Wigderson [BeGokVi88]; properties 1, 2, 3, and
4 were later achieved by Feldman in his Ph.D Thesis. His method has not
been separately published. but appears without proof in [BeGoWi88], whose
authors have also announced to have found an equivalent but much more
complicated method. In this paper we also provide a simpler proof of Feld-
man’s protocol.

Let us also say that Cynthia Dwork has told us that she, Dolev, Naor,
and Yung have obtained this same result, and that they will not write it up
since we have already done it.

Daspensing with Broadcasting. Removing broadcasting is useful, not
only from a theoretical point of view -where one wants to know what are
the resources necessary to guarantee security- but also from a practical one.

Capability of broadcasting may be obtained among processors imbedded
in a special parallel machine. However, the players of cryptographic protocols
are physically far away, and do not belong to a special computer hardware.
In this scenario, it is hard to believe that they players may want or always
can to communicate -say- via radio using established frequencies! Even if
they could, this would hardly be considered a secure communication channel,
unless cryptography is used. It is a main point here not to use cryptography
to understand what security can still be achieved if one-way functions do not
exist!

Broadcasting a message may also be simulated by sending the same mes-
sage to all other players. This, however, only works if all players are honest.
In a cryptographic setting, one better not assume that a player really sends
the same message to all other players!

We remove broadcastas follows. First we blend Feldman’s protocol with
graded broadcast (a protocol due to [FeMiSO]) thus obtaining a protocol
that is implementable in a point-to-point communication network but still
presents a degree of ambiguity. This ambiguity is then removed by running
the expected constant-round Byzantine agreement of [FeMiSO] a constant
number of times. In this protocol, however, the players do not terminate
simultaneously, but they can be off of one round. Thus some good players
may start executing other steps of our protocol ahead of bad players, and,

258

in doing SO, they may divulge information before before the bad ones have
sent theirs to anyone. Though this is potentially dangerous it will not affect
the correctness of our enterprise. This extends also to the point when VSS is
used to secretly committing to bits that are later Exclusive-Ored to obtain a
common coin. Generating a common coin thus entails running concurrently
n Byzantine agreements. Though each one ends in expected constant-rounds,
one cannot “expect” that all of them will end in expected constant-rounds!
(To see this, let’s change game. Assume that an individual flips a fair coin.
Then it will get Heads in expected two trials. Assume now that n people
flip each a fair coin. Then it is not true that all will get Heads in expected
two trials. Rather After one round half will have gotten Heads, in one more
round another half will get Heads, and so log n round will be needed.) Thus
we must make use of a recent result of Ben-Or and El-Yaniv [BeE188] that
extends the work of [FeMiSO] to many concurrent Byzantine agreements.
Though the players may even more seriously be out-of-step, one can argue
that security of the coin flip is not affected.

@ k d Z Q . / . In the final paper, we will prove our result to be optimal in
all mentioned accounts.

More on Private Channels. Protocols whose security relies on private
channels are much preferable to the ones relying on one-way functions. First,
because all communication can still be encrypted though private channels
are available (thus an enemy must both s a y - factor, and have access to
physically protected lines (or human courriers). Second, because one-way
functions may not exist, but secure channels may. And third, because even
if an enemy manages to dig -say- a hole in the ground and tap a channel
that was believed to be secure, we can consider this equivalent to having the
enemy corrupting the player who owned the channel. Since we can tolerate
1/3 of the players to be corrupted, we may essentially tolerate an enemy to
tap quite a few channels without compromising our security.

2 Definitions

Graded Protocol - Let P be a distributed terminating protocol, executed
by n players. There is a distinguished player, D, the dealer, who starts with a
private value 3 E [O..m-l]. The protocol P is intended to distribute the value

259

s to the n players. At the end of the protocol each player P, outputs a grade.
P-conjdence, E {0,1,2}, and is able to "access" a P - valve; E [O..rn - 11.
The meaning of "access" depends on the type of the protocol, P . We say
that P is a graded protocol if the following properties hold:

1. Acceptance of good values - If the dealer D is honest then for each
honest player P,, P-confidence, = 2 .

2. Semi-unanhzty - If any honest player P, outputs P-confidence, = 2.
then P-confidence, > 0 for each honest player P,.

3. I'enfiability - There exists a value s' E [O..rn - 11, such that all good
players whose P-confidence, > 0 , can access 3'. If D is honest then
s = s'.

In this paper we shall need the following definitions of two particular
graded-protocols.
Gradecast Protocol - Is a graded protocol. The meaning of "access" in
this protocol is that player P, actually holds GCST-value, at the end of the
Gradecast.
Graded Share/Verify and Recover Protocol - Graded Share/Verify and
Recover is a graded protocol. Player P, "accesses" GSV-value, by executing
the Recover Protocol, of which the output is GSV-value,. An additional
property is required for the Graded Share/Verify:
Unpredtctabzlity - Let A be an adversary acting on the protocol, who doesn't
corrupt the dealer, and who can corrupt up to t < n/3 of the players. If A
outputs a value T as his prediction of the dealer's value before the start of
Recover, then the probability that 7 = s is l /m.
Verifiable Secret Sharing Protocol - Is a distributed, two phase, termi-
nating protocol, executed by n players. and a distinguished player D , the
dealer. The dealer holds a private input s E [O..rn - 11 which he distributes
in some manner in the first phase of the protocol. At the end of the first
phase the dealer will either be disqualified, or it will be known that in the
second phase, the value 3 will be known to all honest players.
Interact ive Consistency Protocol [PSL]: Is a distributed protocol carried
out by n players. Player P, has a prlvate value v,. The protocol allows each
player to compute a vector vector, = b,lb,2...b,,, so that for each honest Pa
and P, we have vector, = vector,. And for all honest players P, and P, we

260

have that vectorilj] = u j . In different words, this is n Byzantine Agreements
executed concurrently.

3 Graded Share/Verify and Recover

Theorem 1 Graded Share/Verify and Recover with the above properties can
be achieved in constant time, where t < n /3 , without the use o f broadcast
channeZs and with no probability of e m r .

We shall start by stating our protocol:
Graded Share /Verify Protocol

1. Dealer randomly chooses E 2, 0 6 z,j 5 t where p >
~ , m , except am = s, and defines a bivariate polynomial f(z,y> =
C;,j a;;&;, so that f (0 , O) = s. He computes f (i , y) and f(z, i) for all
i and defines: g;(y) = f (z , y), hi(z) = f(z, 2) . He hands over to player
Pi, on the private channel, the poiynomials gi(y) and h; (s) .

2. Player P, computes h,(j) for each j and hands the value to player P;.

3. Player Pi looks at all the values he received in the previous step,
h(Z), ..., A,,(;) (some may have not been received), and checks whether
they satisfy

For every j that doesn't satisfy the equation, P; gradecasts "expose

g , (j) = hj(i)?

si(j>".

4. The dealer gradecasts the values g;(j) for all requests that he received
with GCST-confidenceD = 1 or 2.

5. Player P; checks for aLl the values gi(j) and gk(i) that were gradecasted
by the dealer whether:

0 GCST-confidence, = 2.
0 Does the GCST-value;, gradecasted by the dealer equal the value

which he holds.

261

If either one is not satisfied he gradecasts "expose g i (y) and h;(s)" and
distributes on the private channelles "disqualify dealer".

6. The dealer gradecasts all the polynomials requested in the previous
step for requests with GCST-confidenceD = 1 or 2.

7. Player P; checks for ail requestsjn Step 5 , whose GCST-confidencei =
2: if the reply in Step 6 doesn't have GCST-confidence; = 2, or for
some gradecasted gk(y) and h k (s) , gk(i) # h ; (k) or hk(i) # g , (k) then
he distributes "disqualify dealer'.

8. Player Pi counts how many "disqualify dealer" votes he got if count 2
t + 1 then he distributes "no secret" otherwise he distributes "secret".

9. Player Pi counts how many votes of "secret" he got and sets GSV-confidencei
of the Graded Share/Verify in the following manner:

count of "secret" 2 2t + 1 set GSV-confidencei = 2, else,

0 count of "secret" 2 t + 1 set CSV-confidencei = 1, else,

otherwise GSV-confidencei = 0.

Lemma 1.1 If all honest players' polynomials do not define the same bi-
variate polynomial then each honest player P, will set GSV-confidence; = 0.

Proof of Lemma
If at the end of step 5, t + 1 or more honest players distributed "disqualify
dealer" then all honest players will set GSV-confidence; = 0. Thus we can
assume that the number of satisfied honest players, at the end of Step 5,
is 2 t + 1. If Pi is satisfied that means that for all j , gi(j) = hj(i). Let
us assume, w.l.o.g., that Pl,..,Pr r 2 t + 1 are satisfied, and that they
hold {gl(y) hl(z)}, ..., { g , (y) h , (z)} respectively. Through the polynomials
gl(y), ...,g t+l(y) a single bivariate polynomial f(z, y) , can be interpolated.
From f(z,y) we can defin e j i (y) and hi(z) 1 5 i 5 r . We need to show
that g;(y) = g;(y) and h i (z) = h ; (z) for 1 5 i 5 r . And from this we can
deduce that any subset of t + 1 polynomials from this set define the same
bivariate polynomial f (z , y) . We immediately have that g,(y) = g ; (y) for
1 5 i 5 t + 1, from the definition.

262

Claim: For 1 5 i 5 T , h, (z) = h, (z) .
It is enough to prove for h,(z) that h , (j) = & (j) for 1 5 j 5 t t 1, (because
h, (z) is a polynomial of degree t , and if it is equal to another polynomial at
t + 1 points, then they are the same polynomial).
Proof of Claim
For 1 < j 5 t + 1

~ ; (j) ddgf h f (j , def of E - ~how=bcfo~ = g,(i) - g,(i) 5 Mi)

From the above we have that h , (z) , ..., h,(z) define f(s, y) 7 and by the
same reasoning gl(y), ...,g,(y) define f(z, y). In other words all satisfied
players define the same bivariate polynomial J (z , y). If at Step 6 the dealer
gradecasts some polynomial gk(y) and h k (Z) which do not satisfy the equation
that gk(y) = ijk(y) (same for h) then this polynomial will match at most t
of the previously satisfied players thus increasing the number of unsatisfied
players to 2 t + 1. So either all 2t + 1 polynomials held by honest players
define the same f (s , y) or they will all set their confidence to 0.

Lemma 1.2 I f the dealer is honest then for all honest players, Pi, we will
have GSV-confidencei = 2.

Proof of Lemma
This is equivalent to showing that no honest player will ever distribute "dis-
qualify dealern. This can happen only if there is a contradiction between two
values handed out by the dealer, which can never happen when the dealer is
honest.
Recover Protocol

1. Player Pi distributes the polynomials g;(y) and h; (s) .

2. Player P; received w.1.o.g gl(y) ,hl(Z) , ..., g,(y),h,(z) r 2 2 t + 1. He
checks if gj(y) satisfies the equation

gj(kl) = h k l (j) f o r >_ 2t + 1

If yes then he determines that gj(y) is in fact f (j , y). He takes a set of
t + 1 good g's and interpolates through them to compute f (z7 y), and
from that to compute f (0 ,O) .

263

4 Verifiable Secret Sharing

Theorem 2 VSS can be achieved in constant expected time where t < n / 3 ,
with no broadcast channels and wzth no probabzlity of error.

We will start by stating our protocol.
VSS Protocol
First Phase:

1. Dealer executes Graded Share/Verify

2. All P,’s execute the expected constant-round [FeMiSO] Byzantine Agree-
ment where their input into the BA is as follows for P,: if GSV-confidence, =
2 then enter ”yes” if GSV-confidence, = 0 or lthen enter ’,no”.

3. If result of BA is “yes” determine that there is a secret and that it is
recoverable, otherwise the dealer is faulty.

Second Phase:
The Recover Protocol stated above.
Proof of Theorem:
The above protocol achieves Theorem 2.
Honest dealer: At the end of the GSV all honest players have GSV-confidence, =
2, due to the property of nacceptance of good values”, so they all enter ”yes”
into the BA. Because of the meaningfulness property of the BA, which states
that if each honest player enters the same value, v, into the BA, then the
result of the BA will be v, they will agree on ”yes”, achieving the desired
properties of the VSS.
Dishonest dealer:
If at the end of the GSV the honest players have a GSV-confidence, =
0 or 1 then they will all enter into the BA and as in the above case due
to the meaningfulness of the BA the result of the BA will be “no”. If the
honest players have a GSV-confidence, = 1 or 2 then some will enter ”yes”
and some ”no”. But in this case we don’t mind what the result of the BA
will be. If all honest players have GSV-confidence, = 1 or 2, then due to the
verifiability property of the GSV protocol they can all reconstruct the same
secret. So whether they all decide to reconstruct or not they will be able to
achieve their goal.

+ constant expect BA (FM)
Run time: 15 steps

o w

264

5 Concurrent VSS

Concurrent VSS Protocol - Is a distributed two phase protocol, executed
by n players. Each player P, holds a private value 3 i . In the first phase of
the protocol all players, concurrently, distribute their values. At the end of
the first phase all honest players will determine for each player Pi whether
he is disqualified, and if he is not then they all know that his value s; can be
recoverable in the second phase.

Theorem 3 Concurrent VSS can be achieved in constant expected time where
t < n / 3 , without the use of broudcust channels and with no probability of er-
ror.

Concurrent VSS Protocol

1. Dealer D1, ..., D, execute Graded Share/Verify concurrently, for values
3 1 , ,.., 9,. Let US denote by GSV-confidencejj the confidence Pi has for
the GSV executed by D,.

2. Execute the expected constant-round Interactive Consistency Proto-
col of [BeE188], where the value entered by P, into the j t h BA is: if
GSV-confidencetj = 2 then enter 'yes", otherwise "no".

3. For all j , if vector;Ij] = yes then player P, determines that Dj's secret
is recoverable, otherwise he determines that D, is faulty.

Correctness: As for single VSS.
Runtime: 15 steps n independent VSS

+ constant expected n parallel BS (BE)
O(1)

6 Common Coin

Definition - A cornrnon coin is a coin which is visable to all players.

Main Theorem A common coin for which Pr(cain = 1) = 1/2 can be

Common Coin Protocol
achieved in constant ezpected time with no broadcast channels and t < n J3.

265

1. All players P, shares a random bit r , using the Concurrent VSS Protocol

2. All players reconstruct the secrets which were not disqualified during
the VSS. The set of secrets is ri l , ..., rrk Ic 2 2t + 1

3. The coin will be r;, @ ... @ rrk

Claim The above protocol achieves our Main Theorem.
Proof The fact that the coin is common to all honest players is easily seen.
Due to the BA they all consider the same subset of secrets as correct secrets,
and so in step 2 they will all reconstruct the same set of secrets. Each
reconstructed secret will be the same for all players because of the VSS
properties. To see that the Pr(coin = 1) = 1 / 2 we need only note that there
is at least one truly random bit shared by an honest player and that this bit
is unknown to the dishonest players at the time when they commit to their
value by sharing it using the VSS.

References

[BeE188] M. Ben-Or and R. El-Yaniv. Interactive consistency in con-
stant expected time. Inst. of Math. and Comp. Sci., Hebrew
University, Jerusalem, 1988.

[BeGoWi88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for fault-tolerant distributed computing. In Proc.
20th ACM Symposium on Theory of Computing, pages 1-10,
Chicago, 1988. ACM.

[BeMiRoSO] D. Beaver, S. Micali, and P. Rogaway. The round complexity
of secure protocols. In Proc. 22th ACM Symposium on Theory
of Computing, May 1990.

G . Blakely. Safeguarding cryptographic keys. In AFIPS, vol-
ume 48, pages 313-317. NCC, June 1979.

S. Goldwasser B. Awerbuch, B. Chor and S. Micali. Verifiable
secret sharing in the presence of faults. In Proc. of the 27th
Annual IEEE Symposium on Foundations of Computer Science,
1986.

[Bla79]

[B.Mi86]

266

[BrDo84] A.Z. Broder and D. Dolev. Flipping coins in many pockets
(byzantine agreement on uniformly random values. In Proc. of
the 25th Annual IEEE Symposium on Foundations of Computer
Science. pages 157-1 70. IEEE Computer Society Press, October
1954.

[ChCrDa88] D. Chaum, C. Crepeau, and I. Damgard. Multi-party uncon-
ditionally secure protocols. In Proc. 20th ACM Symposium o n
Theory of Computing, Chicago, 1988. ACM.

P. Feldman and S. Micali. An optimal algorithm for synchronous
byzantine agreement. Technical Report LCS/TM-425, MIT,
June 1990. (Submitted for publication in SIAM J. on Comput-
ing.).

[FeMiSO]

[GaHaYu87] Z. Galil, S. Haber, and M. Yung. Cryptographic computation:
Secure falt-tolerant protocols and public-key model. In Proc.
CRYPT0 87, pages 135-155. Springer Verlag, 1987.

[GoMiW86] 0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic
protocol design. In Proc. of the 27th Annual IEEE Symposium
on Foundations of Computer Science, pages 174-187, Toronto,
1986. IEEE.

[%Be891 T. Rabin and M. Ben-Or. Verifiable secret sharing and mul-
tiparty protocoles with honest majority. In Proc. 21th ACM
Symposium on Theory of Computing, 1989.

A. Shamir. How to share a secret. Communcations of the ACM,
22:612-613, November 1979.

[Sha79]

	Collective Coin Tossing Without Assumptions nor Broadcasting
	Introduction
	Verifiable Secret Sharing
	Verifiable vs Simple Secret Sharing
	Our Solution

	Definitions
	Graded Share/Verify and Recover
	Verifiable Secret Sharing
	Concurrent VSS
	Common Coin
	References

