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Abstract

The so called, Rabin "paradox" is a proof that a given signature system, which
is secure under ciphertext only attack is insecure under chosen message attack.
The construction that is used to prove the first clause is also used to prove the
second. For several years it was believed to be inherent to public key signature
systems. A similar problem existed for public key cryptosystems (under chosen
ciphertext attack). Trap-door functions were inherent in the construction of the
"paradox."

In 1984 Goldwasser, Micali and Rivest constructively showed that one can
overcome the "paradox." Naor and Yung (1989) resolved the similar problem
for public key cryptosystems. Both solution actually solve two problems. They
resolve the "paradox," with the strictest definition of security (for a cryptosystem
it amounts to the demand that for a given cryptogram c and two messages mo, mi
it should be infeasible to decide whether c resulted from mo or mi with probability
significantly greater than half). Both solutions are very complicated.

We show that a similar "paradox" exists for many key distribution systems,
even if non-trapdoor one way functions are used (like in the Diffie-Hellman varia-
tions). Using the simple basic definition of security (given the messages exchanged
during the protocol it should be impossible to find the resulting session key in
probabilistic polynomial time) we show a simple and practical key distribution
system which is provably free of the paradox.

1 Introduction

Consider 2-party Key Distribution Systems (KDS) with one transmission in each
direction (party i transmits ?%); these transmissions are independent of the private
secret keys (and therefore, these systems are zero-knowledge as far as the private
secret keys are concerned). The transmissions may be the results of computations
Ti = Fi(ei), where the functions F{ may be one-way, and ê  is randomly chosen. Si}Pi
are party t's secret and public keys respectively.
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Let A be a “reference point” (believed to be a )  hard problem, like factorization, 
or equivalently, Composite Diffie-Hellman (CDH) ([S],[M], 
A: Input: I ;  Output: 0 = A ( I ) .  

tack, by a Passive adversary, i.e. 
B,+ Input: X ,  T I ,  T Z  (X is the public data); Output: k = g ( X ,  T I ,  ~ 2 ) .  

Let B,, denote the cracking problem of a given KDS, under Ciphertext-Only at- 

Let Bkkp denote the cracking problem (of the same system), under Know (old ses- 
sion ) Key Attack, by a Passive adversary, i.e. 
Bk+: Input: X , T ~ , T ~ , T ~ , T ~ , I E ’  = g ( X , r i , r i ) ;  Output: k = ~ ( X , T ~ , T ~ ) .  

Throughout efficient computation means “computable in probabilistic polynomial 
time.” If a cracking problem is efficiently solvable then a system is insemlre for that 
attack. We show that if Bkkp is reducible to A in probabilistic polynomial time, and 
A is reducible to Bcop in  probabilistic polynomial time: s.t. the second reduction 
holds €or every T ~ , T Z ,  and such that the reductions maintain certain parameters, 
and the functions c-’ are efficiently computable. then Bkkp h a  efficient solution. 
The crux of the proof is combining the two reductions into one reduction from B k k p  

to Bcop, and then using k‘ ,  taken from B+‘s input to replace oracle Bcq. The above 
dichotomy (hard BcT, and easy B k k p )  does not hold for syst,eins s.t. triples ( T ; , T ; , ~ ‘ )  

are efficiently computable given only the public data X .  Using this we present a 
simple, secure, non “paradoxical” KDS.  This system, and several of our “paradoxical” 
systems appeared in [MTI]. However, the!; do not mention the “paradox,” and no 
formal definition of security is given. 

2 The main results 
Let problems A,  BcT, Bkkp be as defined above. 

Theorem 1: If B k k p  is reducible in probabilistic polynomial time to A ,  and A is 
reducible in probabilistic polynomial time to Bcop, s.t. 

(i) The second reduction holds for every T ~ , T ~ ,  in the targets of F,, and Fz, respec- 
tively, and 

(ii) The public data, X, of Bkkp is identical to that of A ( I  = X) and BcV, and 

(iii) F,, Fz are not one-way functions (i.e. FY1 are efficient.ly computable), 

then Bkkp is efficiently solvable. 

Proof: The reduction from Bkkp to A together with I = X imply the existence of 
efficiently computable function G,, s.t. k = GI(X,rl,~p,~~,~~,k‘, A(X)). The reduc- 
tion from A to Be* together with ( i )  imply the existence of efficiently computable 

‘The demand that the reduction holds for every rl, r2 is used to  substantiate uniform hardness 
claims. 
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function Gz, s.t. A ( X )  = G2(X,e:,eB,k') .  Hence Bkkp is efficiently solvable using 
k = G ( X ,  T~,Tz,(,T;, k', G ( X ,  Fcl(~i), F;'(T;),~')). 

Q.E.D. 

if given X ,  arbitrary triples ( T ; ,  T:, k') are polynomially computable, then Bkkp and 
B,, are of the same complexity. A system with the above property does not have 
the "paradox." We later show such a KDS. 

3 Example of a "paradoxical" system 

The system is a slight modification of a system shown in [YS]. It belongs to the 
Diffie-Hellman family of KDS, which relies on the difficulty of the discrete-log prob- 
lem. Let p and q be two large primes, and let m = p q .  Let a be an element of high 
order in 2;. Each participant i has a pair of public and secret keys (p , , s i ) ,  where 
P. , - = a-b' mod m. The protocol is completely symmetric, and therefore we describe 
just one side, i. The other side j mirrors i ' s  actions. 

begin 

1. Party i chooses a random T ,  f R  (1,m) with uniform distribution, and the 

2.  Party i computes k,, 3 ( a ' ~ p ~ ) ' ~ - ' *  mod m. 

parties exchange these values. 

end 

Clearly, k , = k,, a('*-s.)(r~-'~) mod m 
'3 - 

The initial cracking problem (before any communication) is not solvable, since 
there isn't enough information to determine even one bit of the key. The communi- 
cation is completely independent of the secrets, so it does not provide any additional 
information on the secret keys (s; and s,). This proves Lemma 1. 

Lemma 1: In  the above KDS no information on the identification secrets leaks, 
under ciphertext only attack. 

Shmuely [S] (and later McCurley [MI) analyzed a composite DH scheme, in which 
the public and secret keys are as in this scheme, and the session key is kij 

a'''~ mod m. We henceforth refer to  this system as CDH (Composite Diffie-Hellman). 
Shmuely and McCurley gave evidence that for suitably chosen a and m the cracking 
problem of CDH is hard on the average. We summarize the CDH cracking problem 
( A ) ,  and the cracking problem of the new system (Bcop). 

A: Input: a=, ay, a, m; Output: a z Y  mod m. 
BCv: Input: ~ , , ~ ~ , a - ' * , a - ' ~ , a , m ;  Output: a(r*-gi)(rj-a~) mod m. 
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Lemma 2: V T ; , T ~  A is reducible in polynomial time to BcT. 
Proof: For any T; ,T ,  E [O,m), set a-‘* = az, = ay, The oracle outputs 
a(ri-’*)(r~-O~) = arar). ( Q - * * ) ~ J  . (a-‘~)~a .a***>. The first three multiplicands are known, 
hence from the oracle’s answer one can compute the fourth multiplicand, which equals 
the desired answer to problem A. 

Q.E.D. 

Remark: In [YS] a similar reduction is presented, for malicious adversary (im- 
personator), under ciphertext only attack. 

Lemma 3: For this KDS B k k p  has efficient solution. 
Proof: The proof is almost identical to that of Lemma 2 only now a given old key, 
k’, plays the role of the oracle’s answer (and the corresponding r j , r i  are known). 
Once adi”1 mod m is computed from the old key, one can easily compute the new key 
a ( r i - a O ( r J - a j )  mod m, 

Q.E.D. 

4 Example of a non “paradoxical” system 

Transmissions: T;  3 ae* mod m, 
Session key (as  computed by 1): k G ( a d z ) c l  . ( a e z ) ’ l  a r l e z + L z c l  mod m 
Secrecy: A is reducible in polynomial time to BeT, by the assignments a”’ = 
af,ae2 = a y ,  with arbitrarily chosen s 2 , e l .  Also, a. reduction in reverse direction 
exists (with t.wo oracle calls). hence B,, is as hard as A.  

mod m), can be easily comnput,ed, hence they 
don’t contribute any new knowledge, and B k k p  is as hard to solve as BcT, for this 
system. 

In general a protocol is assumed resilient if a disruptive adversary cannot bring the 
honest participants to assume a wrong outcome after executing the protocol. To 
end up with a practical protocol we have to  impose some reasonable restrictions 
on this definition. Therefore, we address the following disruptive adversary: The 
adversary is a.n impersonator, playing in the middle, between i and j ,  pretending 
to be j when talking to  i, and vice-versa. He tries to establish a session-key with 
each of the 1egitima.te parties (not necessa.rily the same key). In doing so he may 
deviate from the original protocol by sending messages, computed entirely different 
from the intended computations (as long as his computations are done in probabilistic 
polynomial time). However. he must conform with the basic structure of the protocol, 
i.e. send messages of the right structure and size, when expected. 

We can reduce the basic Diffie-Hellman problem to the cracking problem under 
impersonatioii attack, with known old session’s information. Since old information 
can be reproduced by anybody easily, we ca.n remo\’e this obsta.cle and concentrate 
on a retluctioii to  the crackiiig 111.obleni wit.liout that hist.or!.. Again, the DII probleln 

Triples ( T ; , T ; , ~ ’  z (aa2)‘’ . 

Resilience: 
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is Input: a, a=, d, N ;  Output: a f Y  mod N .  
The cracking problem for impersonator who plays in the middle, trying to impersonate 
j when talking to i (for example) should be defined in general terms, that is, we cannot 
assume that all he does is choosing some Rj  instead of Rj, but otherwise participates 
in the protocol as originally designed. We assume that the impersonator picks some 
Rj, and sends h(a, gj) to  i, where h(., .) is any probabilistic polynomial time function. 
This function may have more inputs; Any public information can be part of its input. 
So the cracking problem of the impersonator is defined as follows: 
Input: a,N,aR.,P; E as’ mod N,Pj  E asJ,h(a,Rj);  
Output: h(a, gj)” . (as’)& mod N .  

The randomized reduction from the DH problem to this one goes as follows: Set 
a4 t aY; Pj + a=; N t N ,  and pick S; and h(a, I?,) from the appropriate domains 
with homogeneous distribution. Compute Pi G as* mod N .  Given the oracles answer 
h(a, l?,)’; . ( a ’ ~ ) ~  mod N one can easily compute now a z Y  mod N .  
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