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Abstract. A new algorithm is deve/qped for making atttJcks to certain comparatively 

simple LFSR based ciphersyrtems. Special attention is paid tiT'IPards minimizing the solu-

tion distance and guRrRnteeing the success probability of the Mtacks. The algorithm is 

then applied to crack the random bit generators of Geffe (1973) and Beth-Piper (1984). 

I. Introduction 

The linear syndrome (LS) method was discussed in (l] for the purpose of sol-

ving cryptanalytic problems reducible to the following mathematical setting: What is 

given is a certain segment of a binary sequence of the form B - A + X, where A is 

a linear recursive sequence with known feedback polynomial f (x) and the sequence 

X is unknown but sparse in the sense that Prob (x (t) - 1) - r 0 < _!:_, s 0 being 
2 

called the inititd error rate of the sequence A in the sequence B . What is required to 
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do is to recover from the captured segment of B the sequence A and hence the se-

quence X. 

The method suggests to fix an integer r ;;?; 3, find out a set of r-nomial multi-

ples 

g(x) - l + x'' + (l) 

of the feedback polynomial f (x ), compute an odd number, say 2m + 1, of syndromes 

r-1 

<Ji,k {g(x)) ,:;, ~b(i + ip- ik), 

p-0 

(2) 

and revise the signals b (i) to new signals b '(i) according to the rule of majority de-

cision, namely, put b'(i)- b(i) if at least m + 1 syndromes are 1, otherwise 

b '(i) - b (i). 

It has been shown that the error rate s 1 of the sequence A in the sequence 

B'-{b'(i)}is 

where 

m-l 
k Hl 

s 1 - f m (so) - P - ( 1 - 2p ) ~ C 2H 1 (pq) ' 
k-0 

r-1 
1 - (1- 2s 0) 

p ~p(so)- ------
2 

q ~ 1-p. 

Further for any s 0, there exists an integer m,, called the critical number, such that 

ifm < m,, 

where f:) denotes the k -fold self-composite of the function f m. 

(3) 

(4) 

(5) 
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Of course, the applicability of the convergence theorem (5), which suggests ma­

king iterated revision using a fixed number of 2m + l syndromes, is based on the ta­

citly made assumption that during each iteration the error pattern is well-modelled as 

being independent so that the relation (3) between the old and new error rates s; 

and s;+l remains valid. However, the main disadvantage "' •h_e "!!t:~~od is that it pro­

vides no way towards minimizing the solution distance and guarantcei...'lg the success 

probability. The solution distance here refers to the length of the captured segment 

needed in solving the problem. The success probabilin- _ _, the probability of iden­

tifying the correct solution after a certain finite number of revisions. 

In this paper, we give a new algorithm for solving the same ~:c,oi.em, which will 

make up the above defects. We assume that r - 3 and the feedback polynomialf(x) 

itself is a primitive trinomial. Iff (x) is not a trinomial. we can replace it by its tri­

nomial multiple of the least possible degree, which can always be found by compu­

ting discrete logarithms [2]. 

We point out that some of these concepts can be found in [7] with some 

numerical experiments reported. However, their paper gave no consideration to such 

important issues of cryptanalysis as convergence of the method, solution distance, 

success probability, and possible applications. Beside the applications, the present 

paper is interesting in that the algorithm proposed here contains in itself a proof of 

its convergence much simpler than that given in [l]. 

II. The Improved LS Algorithm 

(1) Supercritieal and cleansing numbers 

We start the new algorithm with the following. 
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Lemma. The function w (s) f;.J 1 (s) - s has in [ 0, : } a single root 

a=::: 0.1294. We have w(s) < 0 m [o, a), w(s) > 0 in [a, ~ ], and 

limfi"')(s)- 0 ifO ~ i <a. 
k-oo 

Proof. Let u - l - 2s. We have 

2 2 
2 ( l-u ) [ 2 } w(s) -p (3- 2p)- s- 3-(l-u) 

4 

l-u 

2 
4 3 

u(u-l)(u +u + + u- 2) u (u-l)h(u) 

4 

But h(u) increases strictly with u and h(O)- -2, h(l)- 2, so we see h(u) has only 

one zero (3 in the open u-interval (0, l), which can be found by Newton's method of 

successive approximation to be (3 =::: 0.7412. From here we get the conclusion about 

the zero a and the sign of w (s). Further, if s E { 0, a) and we define s 0 ~ s, 

sk f;.J 1(sk_1), then the sequence sk, k ~ 0, decreases strictly to a certain limit 

s* E [ 0, a), and w (s*) - 0. So we must haves* - 0. This proves the lemma. 

The main idea in the improved LS algorithm is to make the revisions with a 

reducing number of syndromes, with the length of the segment under processing 

being reduced correspondingly. The central role is played by the concept of supercri-

tical and cleansing numbers. 

Definition. By the supercritical number m" corresponding to the initial error 

rate s 0, we mean the least integer m such that the inequalities 

(6) 

hold true for all l ~ k ~ m . By the t -th cleansing number lt corresponding to s 0 
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we mean the least integer l such that 

(7) 

Theorem l. For any s 0 E ( 0, ~ ) and any t ~ 0, the supercritical number m,. 

and the cleansing number lt exist. 

Proof. As pointed out in [1 ], 

Therefore, for m sufficiently large we have 

But we know from (3) 

Tli ~ l, 

So we have 

52-fm-l(sl) <fl(sl) <s1 <a, 

53- fm-k2) < f1(s2) < S2 <a, 

etc. This means the set of positive integers m, for which the condition (6) holds, is 

not empty, and the existence of the m" corresponding to s0 follows from the well-

ordering principle of the set of all non-negative integers. The existence of lt is an 

easy consequence of the lemma given above, for we see from f 1 (sm _1) < sm _1 that 
~~ u 

sm,·-1 < a. 

Theorem l provides a natural justification to the following algorithm for 
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Stepl: l-m", l-k,s0 -s. 

Step 2: If k - 0, stop. Otherwise computes' -fit (s ). 

Step 3: If s 1 < s then k - l - k, s I - s, and return to Step 2. 

Step 4: m,. + l ..... msc, m" - k, s0 - s, go to Step 2. 

so me I msc 14 c (s 0, 4) 

0.03125 l l 2 7 
0.0625 l l 3 9 
0.09375 l l 5 13 
0.125 l l 10 23 
0.15625 2 2 8 23 

0.1875 2 3 4 19 
0.21875 3 4 2 23 
0.25 3 5 l 37 
0.28125 4 6 0 51 
0.3125 6 7 l 85 

0.34375 8 10 0 339 
0.375 13 14 0 2387 
0.40625 22 24 0 218451 

The above is a table of critical, supercritical, and cleansing numbers, together 

with the numbers c (s 0, t) to be defined later in Theorem 2, computed for values of 

s 0 at step length equal to 
l 

32 

(2) The improved LS algorithm 

It may be of some interest to note that 

Now we can state the new LS algorithm. 

Theorem 2. There exists an algorithm which, when given as input the number 

t and a captured B -segment of length 
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N (s 0, t)- ( 1 + 211 + 2; L(m) ]n- c(s 0, t) n, 
m-1 

4m -1 
t--j 

(8) 

where 1~ - deg f (x) and L (m) ~ 2 6 
, will give as output the state vector of the 

attacked LFSR at a certain moment i with success probabilitv 

(9) 

The computational complexity of the algorithm in terms of bit operations is 

Q(s 0, t)- [6/1 

2 + 2mr,(mrc + 2)(211 + 1) + 4;(2j + l)D()- l) 1n (10) 
J-1 ) 

- q(s 0, t) n, 

where 

D(j) .;:.L(l) + L(2) + · · · L(j), D(O)- 0. (ll) 

Proof. The required algorithm is divided into two phases: the reducing phase, 

at which the initial error rate s 0 is reduced to s,, < a; and the cleansing phase, at 

which the remanent error rates, is rendered below 10-t. 
It 

2mrc + 1 
At the reducing phase we need p - f 1 trinomial multiples off (x) to 

3 

form the syndromes, which we choose to be 

2 g 0(x)- f(x), g;+1(x) -g; (x), 0 ~ i ~ p - 2. 

i i 
Observe that each trinomialg(x)- 1 + x 1 + x 2 

provides three syndrome formulas 

2 

cri,I,fg)- ~b(i + ip - ik), k - 0, l, 2 
p-o 
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for checking the same ciphertext signal b (i). We arrange the 3p syndrome formulas 

in the following two different ways: 

(i) u;,o(go), cr;,r(go), ui,l(go), u;,o(gJ), u,,l(gl), ui,2(g1), · · · 'cr;,o(gp-1), 0';,1{gp-l), 0';,2(gp-1) 

(ii) u;,2(go), cr;,l{go), u;,(Mo), u;,2(gl), ui,l(gl), <r;,o(gl), · · ·, 0';,2(gp-l), D';,r(gp-1), u;,o(gp-1) 

Reducing Phase 

Stepl: c(s 0,t)n -N, m" -m. nL(m\ -L. 

Step 2: For L ~ i ~ N - L - l, compute the syndromes needed by the first 

N N 
2m + 1 formulas of (i) or (i.i) according to i ~ -or i > -, 

2 2 

do b (i) - b (i), if at least m + l syndromes are l. 

Step 3: m - 1 - m. If m - 0, go to Step 5. 

Step 4: nL(m) + L - L, return to Step 2. 

Cleansing Phase 

Step 5: tt - m , L + n _.. L. 

Step 6: m - 1 - m . If m < 0, stop. 

Step 7: For L :;:;; i :;:;; N - L - l, compute u, 0(/), ui,l (f), D';,2if), 

do b (i) - b (i ), if at least two syndromes are 1. Return to Step 6. 

Observe that at the (m" -m + 1)-th round of the reducing phase, the signals 

b(i) with 

L~i~N-L-1 (12) 

are revised according to majority decision with 2m + 1 syndromes computed from 

the wider range of signals b (j) with 



42 

L - nL(m) ~ j ~ N- L + >~L(m)- l. (13) 

So we can conclude by reverse induction on m that after the (m" - m + 1)-th round 

of work 

Prob ( b ( i) ;r6. a (i) ) - s,., 

for all i satisfying ( 12), provided at the start of the round we have in the signals 

b (j), with j satisfying (13), all the necessary data for computing rhe 2m + 1 syn-

dromes needed. Evidently, it suffices to check the point :-:Jr the case 

. N 
r - l - j , 2m + 1 = l mod ~ 

2 

2m+ l 
m r--] 

Using the easily checkable fact that ~ L (k) ~ 2 3 
, it is easv to show that in 

•-r 
this case the largest j, for which the signal b (j) is used in computing the syndromes 

lS 

2m+ l 

. N 3 
J max - r -1 + n 2 

2 
~N-L+nL(m)-l. 

This means the proviso is fulfilled at each round and the initial error rate s 0 definitely 

will be rendered below a after the reducing phase. That it will be further reduced to 

below 10-r can be proved in a similar way. Thus we see that, after msc +it rounds 

of iterated revision, the algorithm will output the n -bit vector 

[ 
N-n N-n N-n ] 

b(-
2
-), b(-

2
- + l), · · ·, b(-

2
- + n -1) , 

N-n 
which coincides with the ----th state vector of the attacked LFSR with proba-

2 

bility (9). 
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The formula (10) for the computational complexity can be derived by straight­

forward manipulations, and is omitted here. D 

III. Cracking the Generators of Geffe and Beth-Piper 

Multiplexer 

Figure l. Generator G Figure 2. Generator BP 

The Geffe [3] generator G and the Beth-Piper [4] generator BP (as described by 

Figures l and 2, respectively), are designed on the basis of quite different cryptogra­

phical ideas; but they can be cracked by one and the same method, at the expense of 

nearly the same amount of computation. It is assumed that all the feedback polyno­

mials arc primitive. 

Theorem 3. If in the G-generator the feedback polynomials/; (x ), l ~ i ~ 3, 

of the LFSRs are all knl!Wn to the cryptanalys-t and f 2(x) is a trinomial of degree n, 

then the system can be broken on a captured segment of length N - 37 n, at the 

computational expense of Q - 896 n bit operations, disregarding the work not 

directly related to the LS algorithm. 

Proof. The output signal of the G-generator at the moment t is 

b(t)- a 1(t)a 3(t) + a 1(t)a 2(t) 

-a it)+ a1(t) (a 2(t) + a3(t) )· 

It follows from the balanced property of m-sequences that 

b(t) 
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l --
4 

So we see LFSR-2 is the Achilles heel in the system. If, for example, n ~ 100 and 

we choose t =- 4, then the sequence A 2 - {a 2(t )} can be recovered by our algorithm 

with success probability exceeding 0.99. provided the length of the captured segment 

exceeds 3 7 n . 

Now suppose we already have at hand the sequence .1 2. Compare the sign.us 

a 2(t) with b (t ), for 0 ~ t ~ 3 7n, and mark those morr:~~ts ;, , :'or wn!ch 

It is easy to sec that at these moments 

t 
Divide each power x ' by f 1 (x) and f 3(x) respectively to obtain the remainders 

t, n 1-l x - r. 0 + r. 1x + · · · + r. 1x J, J, J,nl-

and 

t 
x ' - s. 0 + s 1x + 

Jl J, mod f 3(x). 

Then we shall have two linear systems, each containing the same number of approxi-

mately 9n equations 

and 

If n 1, n 2 << 9n, then these systems will determine with probability nearly l (see 

[5]), the initial states of LFSR-1 and LFSR-3. 
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Theorem 4. If in the BP-generator, f 1 (x) and f 3(x) are known trinomials of 

degrees not greater than n, while f 2(x) is arbitrary and unknown, then the system 

can be broken on a captured segment of length N - 3 7 n, at the computational ex-

pense of Q - 1792 n bit operations, disregarding the work not directly related to 

the LS algontiun. 

Proof. Denote the output signal of the clock-controlled LFSR-2 at the mo-

ment t by a 2 '(t), then we have 

Prob [a 2' (t) - a 2' (t + l)) - Prob (a 1 (t) = 0) + Prob (a 1 (t) - l) Proh [a 2(t) - a 2(t + l)) 
l l l 3 

~-+-X-"'"-. 

2 2 . 2 4 

Thus if we write 

then we will encounter with the cracking problem B * -A; +A J, where A; is an 

m-sequence with the known trinomial feedback f 3 (x) and 

s 0 - Prob l a { (t) .. l} - l. 
4 

Mter cracking it with the improved LS algorithm, we will get at the sequence A;. 
The signals a 3(t) can be determined recursively by 

where f ... 0 or l. The actual value of f can be decided by the linear relations the 

signals of A 3 should satisfy, for here f 3(x) is a trinomial. 

Now suppose we have done this and have A 2' at hand. Define 



Since, as can be easily seen, 

we have 
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if a 2'(t)- a 2'(t + 1), 

if a 2'(t) >= a 2'(t + 1). 

1 --

Once again, we meet with the problem 

. l 
A 1 -A 1 +X, s0 - -, 

4 

' 

with the trinomial f 1 (x) assumed known. So we can recover the sequence A 1. 

1 --. 
4 

Finally, the sequence A 2 can be recovered by removing the repeating signals 

which appear when a 1 (t) - l. The unknown feedback polynomial f 2(x) can then be 

found by the well-known Massey (6] synthesis algorithm, provided deg f 2(x) ~ 18n. 
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