
Fair Computation of General Functions in Presence
of Immoral Majority

Shafi Goldwasser* Leonid Levin*
MIT Boston University! MIT

Abstract

This paper describes a method for n players, a majority of which may
be faulty, to compute correctly, privately, and fairly any computable function
f(x\, •..,xn) where x,- is the input of the i-th player. The method uses as a
building block an oblivious transfer primitive.

Previous methods achieved these properties, only for boolean functions,
which, in particular, precluded composition of such protocols.

We also propose a simpler definition of security for multi-player protocols
which still implies previous definitions of privacy and correctness.

1 Introduction

The problem of performing a distributed computation in a fault-tolerant and private
manner has been addressed by many researchers in the past few years.

In a sequence of papers [Goldreich Micali Wigderson 87, Ben-Or Goldwasser
Wigderson 88, Chaum Crepeau Damgaard 88, Ben-Or Rabin 89] it has been shown
that when both private channels between pairs of players and broadcast channels
are available, any distributed computation (e.g. function or game) can be performed
privately and correctly, in spite of worst case behavior of the faulty players, if they
ate ly andcorrectly,

When in majority, faulty players can be shown to be able to prevent the completion
of certain computations by quitting early. Moreover, they may quit while being
"ahead", i.e. having learned more about the output than non-faulty players.

A special computation problem where quitting early is especially harmful was ad-
dressed by [Luby Micali Rackoff 83]: the simultaneous exchange between two players
of random secret bits. Each player must be protected against the case the other player

•Supported by ARO grant DAAL 03-86-K-0171 and NSF PYI grant 8657527-CCR with IBM
matching funds

^Supported by an NSF grant , and the MIT laboratory of computer science.
*Computer Science dept., I l l Cummington St., Boston, MA 02215; e-mail: Lnd@cs.bu.edu

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPTO '90, LNCS 537, pp. 77-93, 1991.
© Springer-Verlag Berlin Heidelberg 1991

78

quits early. The fairness notion they proposed (and achieved under the assumption
the quadratic residue problem is hard) is that the probability that player A knows
the secret bit of player B is within an 6 of the probability that B knows the secret bit
of A (the protocol is polynomial time in E-').

[Ym 861 proposed (and showed how to achieve under the assumption that integer
factorization problem is hard) the following notion of fairness for arbitrary two party
boolean protocols. Suppose two players A and B want to compute a boolean function
f privately and correctly. Informally, a protocol is fair if given any strategy of a
faulty A , the non-faulty B has a strategy such that the probability that B will learn
f, given that A will learn f is at any time during the protocol is as high as i t is in
the beginning of the protocol. The solution is based on the existence of trapdoor
functions. These results were extended in ([Galil Haber Yung 89, Brickell Chaum
Darngaard VanDeGraaf 87)) to the multi-player case.

The drawback of the above fairness definition is its severe limitation on the power
of the faulty players. Since the strategy of the non-faulty players depends on the
strategy of the faulty players, the faulty players program strategy must be chosen
first and can not change depending on the program of the non-faulty players.

[Beaver Goldwasser 891 proposes a different notion of fairness, free from this lim-
itation. A protocol to compute function f is said to be fair: if there exists a strategy
for player B such that for any strategy of faulty subset of players A the ratio of the
odds of B and A to compute the outcome of f is (about) the same at any time during
the protocol as it is in the beginning of the protocol. It is shown how to achieve such
fairness for multi-player protocols for boolean functions (as well as different boolean
functions for different participants). The solution in[l] is based on trapdoor functions,
and in [a] on the existence of ari oblivious transfer primitive.

New Results. In this paper we show how to define and achieve fairness of any (not
only boolean) function from strings to strings. This allows iteration and composition
of protocols preserving fairness. In fact, we can achieve fairness for any interactive
probabilistic computation, (i.e. games - to be defined in the journal version of this
paper). The solution is based on the existcncc of an oblivious transfer primitive
between every pair of players and a broadcast channel. The hilure probability of the
the protocol we propose is exponential while previously known was a polynomial.

We also propose a simpler definition of security for multi-player protocols which
still implies previous definitions of privacy and correctness. [Kilian Micali Ilogaway
901 have proposed independently another set of definitions of security. The relation-
ship between the set of definitions has not been fully analyzed yet.

2 Conventions

Definition 1 0 A interactive Turing machine is one equipped with a work-tape,
input tape, random tape, output tape and several read-only and write-only

79

communication tapes. The random tape contains an infinite sequence of random
bits. Flipping a coin means reading the next new bit from the random tape.

0 A multi-player protocol P = (PI, Pz, . . . , P,) is a tuple of n interactive Turing
machines where P; starts up with x; on its input tape and ends up with some
output y; on its output tape. We call 2 = (2 1 , . . . , xn) the input vector to P.

4

4

Inputs. We assume that the number n of players and identity i of each player P;
are included in its input. Initially coin-flips and inputs are independent. They may
become correlated if their joint distribution became conditional on the information
(say their sum) released by the player. Such coin-flips we call reEewant. Players may
want to keep them secret, to protect the privacy of their inputs. Other irrelevant
coins flips may be released after the end of the protocol. The third type are unused
coin-flips. They are kept, so that modifications of the protocol may use them and
run with no extra random sources. The protocol must separate the three types before
any communication starts and the unused flips must have at least constant density
on the tape. We will treat the relevant coin-flips as part of the complete input, unless
we talk of the proper input.

Outputs. Also, each player's output in non-faulty protocols consists of its input,
relevant coin-flips, and only one more string P (I) , common to all players. This as-
sumption does not limit generality, since we can always add one last step to any
protocol P in which every player i uses a secret random string p ; and tells all other
players the value of exclusive or: yi @ p i . Then, the common output is the concatena-
tion of all y; @ p;. The new protocol is, clearly, equivalent to the old one and retains
all its properties, like correctness, privacy, etc.

Notation 1 Let I = (X I , . . . , x n) be the input vector to protocol P = (PI,. . ., P,).
Then, P (S) will denote the random variable which maps the (uniformly distributed)
contents of random tapes a; of the Pi's into the output vector y' = (y l , . . . , y,) where
y; is the output of machine Pi.

4

4

Let F { 1,. . . , n} be the set of (colluding) faulty players. An upper bound
t 2 IF1 on their number is included in the inputs of all players. The inputs and
outputs of faulty and non-faulty players we denote I F , S!F, PF(S) , P!p(I) , respectively.

Let us choose an arbitrary monotone unbounded security threshold S (k) < k and
call functions k-S(k)Io(') negligible. If a family Y of random variables runs in expected
polynomial time E,Tyk(,) = ko('), we call it samplable.

Definition 2 A test is a probabilistic algorithm t (w , y) which maps the tested string
y into the result { f1 ,0} , using its internal coin-flips w . Tests must run in expected
polynomial time E,Tt(w,y) = Jy1'('). A test t accepts a family Yk(a) E (0, l}k if its
expected value t y (k) = E,,,t(w, Yk(a)) is negligible. We call indistinguishable:

4 4

80

0 two families of random variables, if every test accepts both or none of them.l

0 protocols ?, @, if ?(.'), @(?) are indistinguishable when G is generated by any
samplable family of random variables.

2.1 Faulty Versions of Protocols
Versions of a protocol capture deviations from it by the faulty players.

Definition 3 A version of protocol P is any protocol P', with P!F = &.

Note, that no restriction is put on Pb. They may deviate from the PF at any time
and freely exchange messages among members of F . This raises two questions.

Question 1: How does a player become faulty and enter F?

Answer: We assume an adversary who points to a player and makes it faulty.

Question 2: How does such an adversary decide who to point to?

Answer: We consider two models for such adversary.

In the first model, the adversary, called the static adversary, chooses the set of
faulty player before the beginning of the computation.

In the second model the adversary is called the dynamic adversary. In this model
the adversary observes the broadcast messages and private inputs/communication of
any (none at the start) players which already became faulty. Based on this informa-
tion, the adversary may, at any time and repeatedly, choose new players to become
faulty. Once a player is faulty it remains faulty and their number is limited by t .

2.2 Legal and Moral Faults
Some faults affect the input-output behavior of a protocol but, for trivial reasons, can
never be prevented by the non-faulty players.

For example, players in F may choose to misrepresent their inputs ZF as z$ and
run PF accordingly; also they may choose to replace their output YF with entirely
different strings yb. We refer to such faulty behavior as immoral but legal.

Definition 4 A legal version of a multi-player protocol Y = (PI , . . . , P,) is a protocol
F' = (Pi, . . . , P,!,) where Pi is identical to Pi except for

-4

0 Before any communication with non-faulty machines, the faulty players may
pull together their inputs and random tapes and transform them arbitrarily.

'For non-samplable Y, Y' one should require negligibility of t y - t p .

81

0 Upon termination of F , all i E F may pull together their inputs, outputs, and
random tapes. Then the outputs of faulty players may be replaced by a function
of this pool.

Note: The dynamic adversary in the legal version is active only during the input
and output stages. In these stages he corrupts players choosing them on the basis of
inputs (and at the end of outputs as well) of those players he previously corrupted.

When in majority, faulty players have other non-preventable ways to affect the
protocol’s input-output behavior. Namely, if players quit early, they can prevent the
good players from completing the computation.

4

Definition 5 A legal-minority version of a multi-player protocol P is a legal version
F‘ of a protocol identical to P except that

0 At the start of the protocols the players broadcast whether their inputs are
empty. If anyone’s input is empty, the protocol is aborted and players output
error.

0 At any time n - t players may broadcast ”I am faulty”. Then the protocol
is aborted and non-faulty players append to their output the identity of the
players who declared themselves faulty.

2.3 Robust and Fair Protocols
Definition 6 A protocol P = (Ply . . . , P,) is robust (respectively semi-robust), if for
every version pt of 3, there exists a legal (respectively legal-minority) version p, of
F, indistinguishable from @‘.

4

While robustness is a “complete” quality, semi-robustness requires additional fea-
ture: quit-fairness. It insures that interrupting the protocol does not give an unfair
advantage in knowledge to the perpetrating majority.

In addition to players 1,. . . , n, we will speak of player 0 to mean the coalition of
faulty players whose joint input is 5 0 = 2 ~ . (from here on i ranges from 0 to n).

For generality, we assume that not all output information has equal value. Some
may be useless, as the players may somehow get it for free upon termination of the
protocol 3. Suppose this free information for player i is v(.‘). The function may
not even been known to i during the protocol, but could be known to the faulty
players. (The reader may ignore this extra generality, assuming V = 0.)

Let &(i) be the probability (over .‘,a) of output y = P(Z) given K (Z) and z;,
and 6(i , 2, G) = &Ey#p(4)(jiy) = pp(I) &p(I) 1-p;(3 be the ratio of the average
(over y) probability of a wrong answer to the probability of a correct answer (from
the point of view of player i).

*

1 P 2

y)

82

Let hp,i,t,a be the history seen by player i upto step t on input i, and coin tosses

Let pr(i , 5, G) denote the probability of the correct output P(5) (taken over 5, G)

Let rt (i ,Z,G) = be the ratio of the odds of wrong and correct values for

Let Rt(i, 2) be the expectation (over a) of rt and Dt(i , Z) be its standard deviation.

-4

0.

given x(5) and hi,;,t,a (from the point of view of player i).

P(Z) (from the point of view of player i)

Definition 7 A protocol is quit-fair if

0 for all i, t , 5, Eu' either log < hz or hp,;,t,a E where Hi,i,t is a set
of histories of exponentially small probability over 0. . %$.!# does not depend on 2 .

0 Dt(i , 5) is ~ (J s (i , i, ~) ~ t (i , 2)).

A protocol is robust for minority if it is semi-robust and quit-fair.

2.4
Definition 8 A function f is stable if f(2) is either nil or f(.'), for all I in its domain
and XI, s.t. xIF = X ! F .

Stable Functions and Commitment Protocols

-4

Note 1 Faulty players can not aflect the value of stable functions b y misrepresenting
their inputs.

By running a commitment protocol on inputs 3 we will transform any function f
into a stable function f ' (on possible outcomes y'of the commitment protocol), such
that f'(y3 = f(z') for some z', z j F = Z!F.

-4 -4

3 The Merits of the Definitions
Traditionally, several properties are required of a protocol such as privacy, correctness,
independent choice of the inputs by faulty players, when a minority is faulty. And,
additionally, quit-fairness, when majority is faulty.

All versions of robust protocol satisfy all these properties:
4

Proposition 1 Any version of a robust protocol P satisfies the following properties:

2This can be made arbitrarily small by padding the input r'.

83

rn Correctness: In a legal version, by definition, the non-faulty players output
P ! F (~) , and .IF = Z!F. Now, since there exists a legal version which is indis-
tinguishable from an illegal one and in that the good guys outputs + are correct,
we are practically guaranteed correctness for illegal version of P.

rn Privacy: Several definitions of privacy exist. We recall one of them and demon-
strate it for a robust protocol. Let VIEWF be the random variable which takes
on as value the entire history of communication and coin tosses as seen by the
players in F. Call a protocol private if there is a polynomial time algorithm M ,
s.t. (M (z F , (YF, Y F) , I, y3 is indistinguishable from (VIEWF, I, 9.
Now, any version P‘ of protocol P , can be modified by making + + its faulty players
to output the VIEWF. There exists-a legal version P” of P , with an output
distribution indistinguishable from P’. In a legal version, the faulty players
compute their output based only on their inputs/outputs for P’. It follows 4 that
VIEWF can be generated given only the inputs X F and outputs Y F for P of a
faulty coalition.

-I +

rn independent commitment to inputs: By definition, in a legal version of the
protocol the faulty players decide on which value to use independently of the
values of non-faulty players. Since for every illegal version of the protocol, there
exists a legal version with the same output distribution, the values that faulty
players choose in the illegal version would have been chosen by faulty players
in a legal version independently of non-faulty inputs.

+
Proposition 2 Any version of a robust for minority protocol P satisfies privacy,
correctness, independent commitment to inputs, and quit-fairness.

Proof: Privacy and independent commitment to values are shown as above. The def-
inition of correctness for a faulty majority is an extension of correctness in the faulty
minority case. Namely, we allow non-faulty players to output the special ‘‘error”
output when faulty players quit in the middle of the protocol. For this extended def-
inition, the same argument used for correctness in above theorem will work. Fairness
is guaranteed as part of the definition of robust for minority protocols.

Now previous theorems in the literature can be cast in this terminology:

Theorem 1 ([Ben-Or Goldwasser Wigderson 88, Ben-Or Rabin 891)
If IF1 < n/2, any protocol can be modified into a robust one with same outputs.

Especially interesting is the case of 9 computing stable functions, since in all
versions of robust protocols for a stable function, non-faulty outputs are the same.

84

4 Main Result: Robust for Minority Protocols
Theorem 2 (Main) If an oblivious transfer primitive exists and a broadcast channel
exists, any protocol can be modified into one robust for minority, with same outputs.

Note 2 No restriction is made on the number of faults in the theorem. The obliv-
ious transfer condition has previously been shown necessary for a general protocol
transformation preserving privacy for a majority of faults.

In addition to players 1,. . . , n, we will speak of player 0 to mean the coalition of
faulty players whose joint input is z o = XF. (from here on i ranges from 0 to n).

The 2;'s for player i are chosen at random with some (not necessarily easy com-
putable) distribution. Recall that we assume the original protocol to compute one
common output P (2) (in addition to xi and relevant coin flips). This is so since at
the end of the original protocol each player can choose a random string pi , and send
all other players y; @ pi . The common output will the concatenation of all p; €3 y;.
Clearly, the same privacy properties hold. Thus, from here on we speak of a protocol
to compute a single output.

The protocol consists of four stages: preprocessing, commitment, computation,
and revelation.
Preprocessing

If the number of potential faults is in minority the preprocessing stage is skipped.
If the number of potential faults is in majority, then first the entire network engages in
a preprocessing phase, independent of the inputs. The outcome of the preprocessing
phase is either error or the protocol proceeds to stages of commitment, computation
and revelation. An error implies that the protocol is aborted. A majority of faulty
players can always force an early abort, but their decision to cause an early abort is
independent of the non-faulty players inputs.
Commitment

The commitment stage reduces the problem to computing a stable function P (2) .
It also creates a sequence of (committed to but hidden) coin-flips a (each the sum
mod2 of coin-flips of all users).
Computation

The computation stage reveals the sum (taken over ZAP'"') of P(Z) with random
password w (chosen based on a). Fairness is not an issue at this stage, because any
player can (were the protocol interrupted) make this sum totally random by erasing
her coin-flips.
Revelation

At the revelation stage w is revealed. Privacy is not an issue at this stage, since
w has no information about the inputs (beyond what the function value reveals).

Let e = 1/1Z1. The revelation protocol consists of T < 21wI macrosteps in which
the protocol reveals next unused portion of cr and interprets it as a vector WT E Zp' .
It then reveals a sequence of E - ~ independent bits (one per micro step) 6,(cr) chosen

85

such that bt = (VT. w) (the inner product of VT and 20) with probability 1 /2 + e. At
the end of the macro-step the actual value of (VT . w) is r e ~ e a l e d . ~

Clearly the logarithm of rt(i, 5, Z) (see Definition 7) cannot change by more than
O(E) per micro-step. After going through .5-3 micro steps with an exponentially
small probability the majority of the coin flips differs from VT w. Thus, at the last
step of the macro step when VT - w is revealed, rt+l - vt is changed negligibly uness
this exponentially rare failure of majority has happened. This takes care of the first
requirement of quit-fairness.

Assume for generality sake that at termination of ;he protocol player i may even
be given an extra information K(5). (The function V to be later handed out may
not necessarily be known to the non-faulty players during the protocol but could be
known to the faulty players).

One can easily show that Rt decreases with almost the same speed for all 5, i, Q.
Indeed, let the computation stage output y = P(5)$w. At the outset of a macro-step
T , let ST(Y, a) be the set of w’ with (VT, . w‘) = (VT, . w) for all T’ < T . Let p (Y) be
the probability at the outset (over 3 with given 2; and V , (S)) of y @ P(Z) E Y. Then
at the end of macrostep T , rt = = ~pp(sTbp(w)l

P (W) *

Each w’ has a 2-T chance to satisfy all T of the above randomly chosen VT . w
boolean linear equations and so fall in ST. Moreover, each u falls in or out of ST
pairwise independently of any u’ 4 { u , u @ w } . Thus, the expectation at the end of
a macro step of p(&) - p(w) (over a) is (1 - p (~)) / 2 ~ , and therefore the expected
value of . No change in the expected value occurs at a micro step.

The standard deviation of ST) - p (w) is smaller than the square root of the
mean of p ({ a }) by a factor of 2-T/2 /O(1) , and therefore DT 5 O (a) , (Recall
that 6 (in the definition of quit-fairness) is the ratio of the average probability of
wrong answer to correct a n s w e ~ .) ~

is ;Fw
Thus & is indepen 7 ent of i and the second requirement of quit-fairness is satisfied.

3The purpose of not revealing (PIT . w) immediately is to assure that by quitting early the faulty
players can only receive one coin flip more than non-faulty ones toward the value of (PIT . w) . After
21201 macrosteps, w itself can be revealed.

Sometimes the faulty coalition can be restricted to a polynomial number of possible combinations
(known to all parties). Also the parties may be confident a t the start that their inputs are random
and completely secret. Then a more sophisticated procedure could be used to discriminate against
possible coalitions, which “know too much”. We ignore this issue for now.

4The fairness requirement does not prevent erratic behavior a t the end of the protocol, thus in
special cases when it is detectable that the players doubts are concentrated on a logarithmic number
of outputs we can do better by tossing a cube of all possible answers slightly biases toward the
correct one.

86

5 How to Use the Oblivious Transfer Primitive

5.1 The Oblivious Transfer Assumption
We assume that every two players can perform an oblivious transfer.

An oblivious transfer [Rabin, Blum, Fischer Micali Rackoff, Even Goldreich Lem-
pel 821 between two players A and B denoted by f - OTAB(bo, b l , C) is a proccss by
which player A who has bits bo,bl transfers bit b, to player B, where c is chosen by
B. The transfer is done obliviously: player A can not distinguish between the case
player B received bo and the case B received bl ; player B can not distinguish between
be = 0 and bZ = l.5 An oblivious transfer of one bit, means that the other bit is 0
and the (random) order of bits is revealed after the transfer is performed.

An oblivious transfer can be implemented if trapdoor functions exist and A and B
are computationally bounded [Even Goldreich Lempel821; or can be derived from the
existence of noisy channel and other physical means even in the presence of infinitely
powerful A and B [Crepeau Kilian 881.

We show how to use an !j- OTAB(bo, b l , c) protocol between every pair of players A
and B to implement the preprocessing, commitment, and computation stages specified
in section 4. Thus, we start with a legal protocol and transform it t o one which is
robust.

Many of the ideas in the transformation which lead to semi-robustness property
(not quit-fairness) are similar to ones used in previous results of [Goldreich Micdi
Wigderson 87, Galil Haber Yung 87, Ben Or Goldwasser Wigderson 88, Kilian 88,
Beaver Goldwasser 891.

In [Beaver Goldwasser 89a] a version of a protocol achieving semi-robustness for
boolena functions based on the existence of trapdoor functions, is described. Here,
we describe a protocol based on the existence of oblivious transfer, in which the error
probability is improved from the previously known l/polynomial [Beaver Goldwasser
89b] to l/exponential.

We let t be the number of potential adversaries, k denote the security parameter.

5.2 Preprocessing Stage
5.2.1 Global Commitment and Decommitment

Each player globally commits to a library of 0's and 1's. A global commit has prop-
erties similar to a commit between two players. In fact, many of the the ideas are
similar to the two party bit-commitment of [Kilian 88 1.

In particular, preprocess-global-commit(A,v,J) is a protocol for player A to glob-
ally commit to a bit w such that i f the preprocessing stage is completed successfuly,
then there exists a unique value 6 associated with J such that

5This form of oblivious transfer was shown equivalent to the original one proposed by Rabin.

a7

a G = v if A is non-faulty.

0 At any time player A can decommit C (or 61 @ 62 where 61, 62 are two previously
commited bits) to a subset S of players such that either all non-faulty players in
S will receive the correct value, or all non-faulty players will broadcast that A is
faulty, or an exponentially rare event will happen. In the case of decommiting
G1 @ Gz, the privacy of G1 remains intact for the entire network.

If non-faulty A committed a randomly chosen in (0 , l) then the probability
that the faulty players guess the value of v before it is decommitted to one of
them is negligible.

This is achieved as follows.
Notation: We let rep(v) be a set of k boolean vectors { T i } , l 5 i 5 k such that
for each Ti = (v i 1) . . . , w ; k) the @jv;j = v. We say that rep (v) = (&, ..., G k) is invalid
if for some s , t the $jv,j # $jvtj. To choose a rep(v) at random means to pick the
vij E {0,1} as above at random. To broadcast or obliviously transfer rep(v) means to
broadcast or run oblivious transfer each of the v i j ' s . We let the function all({ b;}) = bl
if for all i, j , 6; = bj , otherwise it assumes an error value.

Preprocess Global Commit(A,v,J):

Step 1. For 1 5 i 5 k" : A chooses v f , @ E {0,1} at random and sets
vi = v t @ v:. A chooses a rep($) = (GL, ..., 3iL) and rep(v:) = (wiR, ..., gLR) at
random; For every player B, A oblivious transfers to B rep(vf) and

The network chooses at random'a set I containing half of the 2's. For
all i 6 I , A broadcasts rep(vL) and rep($). If for some i , d player B gets an invalid
rep(v;d) or inconsistent with information B received then B broadcasts a complaint
and the protocol is aborted.' Otherwise, A broadcasts a set {ci = v? @ uf @ vli E I } .

Step 3.' Repeat for every player B k times: B broadcasts indexes i , j chosen
at random in I ; A broadcasts b = vf $ v:; B chooses d E { L , R} at random; A
broadcasts rep($) and rep(vjd); if 6 # vf @ c; @ vjd @ cj, then B broadcasts a complaint
and the protocol is aborted, otherwise I = I - { i) j } .

Step 4. Each player stores I , {ci , i E I } and the information he received during
the global commit of player A to vf , v?, i E I in BIT - C O M M I T (A , J)" and the
J t h bit is declared committed. (The value of this bit is all(@ @ ci $ v:), i E I)) .

Step 2.

'each bits vi is represented by a pair v?, vf such that vi = v: @ vf .
'It suffices that players alternate in choosing elements in I
'if the protocol is aborted during an execution of preprocess-global-commit, then all non-faulty

'In this step A proves to each player B in turn that for all remaining i , j E I vi @ ci = v, @ c j .
loclearly each player may have received different bits during the oblivious transfer and thus has

players output error.

different information.

88

A t the outset of the preprocessing stage, every player runs the protocol preprocess-
globd-commit for a sufficient number of values v = 0 and P) = 1 as will be necessary
for A to commit bits during the life time of the protocol.

During the protocol player A globally commits to bit u by broadcasting index
J , such that the bit committed during the preprocessing global commit stored in
BIT - C O M M I T (A , J) is m. Once an index J is broadcast it is never reused.

To decommit to a subset S of the players, a committed bit stored in BIT -
C O M M I T (A , J), A runs the following protocol.

Global Decommit(A,S,J):

Let u be the bit committed in BIT - C O M M I T (A , J) and S the subset to which
it should be decommitted.

Step 1: A sends in private to each player in S, for all i E I , rep($) and rep($).
Players in S set P) = c, @ v: @ vf for the smallest i E I .

Step 2: If any player B E S gets for some i , d an invalid rep(v,d) or inconsistent
with information B received during the oblivious transfer stage, then B broadcasts a
request that player A should broadcast rep(v",rep(vl) for all i E I.

Step 3: If any player C detects that the information A broadcasts in step 2 is
"inconsistent" or invalid, then C broadcasts that A is faulty, otherwise the value of v
is taken to be the bit ci @ vf @ P)? where v!, V: are defined by the information which
A has broadcast at step 2."

5.2.2

During the protocol player A will need to prove that various bits globally committed
are the same. Let v and u be two previously globally committed bits stored in

Recall: Bit v has associated with it I,, (c,ili E I ,) , rep(vf), rep(t$) for all i E Iw , and
bit u has associated with it I,, {c,ili E Iu}, rep(uf),rep(@) for all i E Z,.

Decommitting Sums of Globally Committed Bits

BIT - C O M M I T (A , v , J,,) and BIT - C O M M I T (A , U , Ju).

Protocol Prove-Equality(A,u, v)

Repeat for every player B k times: B broadcasts indexes i E 1, and j E I , chosen
at random; A broadcasts b = vf @ u:; B chooses d E {L, R} at random; A broadcasts
rep(v4) and rep(u f) (if any C finds these invalid, then C broadcasts that A is faulty);
if b # vp @ c,i @ u; 8 c,j, then every player broadcasts that A is faulty, otherwise
every player updates I, to be I, - { z } and I , to be I , - { j) .

In fact, general properties of data globally committed can be proven in zero-knowledge
using the protocols of [Kilian 89, Ben-Or et a1 [4]]. We chose the parameter a in the
preprocess-global-commit protocol so to allow repeated zero-knowledge proob about
globally committed bits.

or agree that a bit of the same value has been decommitted.
"By the properties of our global commit protocol all non-faulty players will either declare A faulty

89

5.2.3 Private Communication Lines

During the protocol players A and B will need to privately communicate and yet 3e
able to prove to other players that the messages they send privately were computed
correctly with respect to their committed inputs and previously received messages.

If encryption functions were available this would present no problem, however we
only have the ability to perform oblivious transfers between every two players.

Thus, in the preprocessing stage every pair of players prepare and globally commit
to a supply of 0’s and 1’s known to A and B alone which both can globally decommit.
These bits will be used later for private communication.

This is done by running the following protocol.

Protocol Preprocess-Private-Communication(A,B,J)

A randomly chooses b E {0,1} and runs an identical protocol to Preprocess -
Global - Cornrnit(A, b, J) with the exception that the information stored normally
in B I T - C O M M I T (A , J) is stored in P R I V A T E - C O M M I T (A , B , J) . Next A
decommits 6 to player B by running Global - Decornmit(A, { B } , J) ; (Note now that
both A and B can decommit the bit store in P R I V A T E - C O M M (A , B , J) .)

During the protocol A sends private message rn = ml, ..., m k to player B by
broadcasting indexes Jj such that for every i = 1, ..., k the value of the bit committed
in PRIVATE - COMM(A, B , Ji) is mi. (Once an index J is broadcast it is never
reused.)

5.2.4 Global Oblivious Transfers

During the protocol every pair of players (A,B) will need to engage in an oblivious
transfer in such a way that A and B can prove to to the rest of the network that
indeed they have fed the correct inputs to the oblivious transfer process, and have
received claimed outputs.

This is achieved by having every pair of players (A , B) prepare a supply of oblivious
transfers in which the inputs and the outputs have been globally committed.

Let i E (0, l}3. Say that an oblivious transfer is of type i = ioiliz if bo = io,
bl = il and c = iz. To prepare at least L oblivious transfers of each type i E (0, 1}3,
every pair of players (A , B) execute the following protocol O (L + k) t’ imes.

Protocol Preprocess-Oblivious-Transfer(A,B, J)

Step 1. For j = 1, ..., k”: Player B globally commits to 2 randomly chosen in
{0,1}; Player A globally commits to g, G , rJ randomly chosen in (0,l). Players A
and B run an OTAE(G @ rj , @ rj , c‘); Player B globally commits to ? j which he
received as a result of the oblivious transfer. (Clearly, if A and B are non-faulty, i j

should equal bi,, @ r j) .

90

Step 2. The network chooses at random l 2 a set I of half of the j ' s . For all j 4 I ,
A globally decommits g, g , 6 to the entire network; B globally decommits 2 and $3
to the network. If any player complains during these global commits or rj @ d, # i j ,

the protocol is aborted. Otherwise, player B globally commits to randomly chosen
c E { O , l } , broadcasts set I1 c I such that 11 = (jl.1 = c}, and proves that 2 = c
iff j E 11 (using the Prove-Equality procedure defined above.) Player A globally
commits to randomly chosen bO,bl,r E { O , l } , broadcasts set 12 c I1 such that
12 = { j l G = b o , g = bl , rJ = T } , and proves that bj, = 150, = hl , T J = T iff j E I2
(using the Prove-Equality procedure). If for some i , j E I2 iJ # i' A broadcasts a
complaint and the protocol is aborted, otherwise A globally commits to 1' such that
i = i j , for all j E I2 and proves this fact (using the Prove-Equality procedure).
Each player stores I , and the information obtained during the global commits of
b3,, %,$,I-', i j , for j E I , in its copy of OT - C O M M I T (A , B , J) .

During the computation stage when A and B need to engage in an oblivious
transfer with parameters Bo, Bl known to A and parameter C known t,o B they run
the following protocol.

Protocol Global-Oblivious-Transfer(A, B , Bo, RI, C)
. . .

BselectsaJsuchthat theset {g , e ,C3 , r f ,? , j E 1 2) storedin O T - C O M M I T (A , B , J)
is such that cl = C for all j E I , (a fact B proves to the network), and broadcasts
J to the network. If Bo = bi and B1 = bi for all j E I2 (a fact A proves to the
network), A decommits r j , j E I 2 to B, else J is cast out and the step is repeated. B
sets Bc = a21({ra @ is , s E I , }) .

5.3 Input Commitment and Computation Stages
At this stage every player A needs to globally commit to its input X A and a sequence
of coin flips CYA.

Let X A Q A = y i ...yT (in binary). Player A broadcast^'^ indexes J1, ..., Jk such that
the bit committed in G L O B A L - C O M M I T (A , J ;) is y i .

Set a! = Cplayer A (YA mod 2.

5.3.1 Computation

Let Cp be the arithmetic circuit over field of elements F computing the legal protocol
P (assuming that P has already been modified to output single output to all players).
Let 7~ E F be a unique element associated with player B.

In order to allow the network to compute with inputs X A (and a,), player A secret
shares X A (and a,) as follows. A selects a random polynomial p, , of degree t such

121t suffices that players alternate in choosing elements in 1
I3once an index is broadcast it will never be reused.

91

that p,,(O) = $ A . For every player B, A globally commits to pZ,(y8) and privately
communicates p , , (y ~) to B.

Note now that because of the properties of PRIVATE-COMM every player B now
knows p,, (y~), and every other player has received a global commitment to the value
of p , , (y ~) which can be decommitted either by A and or B.

A now proves in zero-knowledge to the network that the values privately sent
{ pz,(y~) } ~ interpolate to a unique t degree polynomial whose free term is X A .

The arithmetic circuit Cp has two types of gates: addition (+), and multiplication
(x) over the finite field F (scalar multiplication is a trivial extension of + gate).

The circuit is evaluated in a gate by gate fashion. The invariant during the
computation stage is that each player holds a share of all inputs to the next gate to
be computed, which is globally committed.

Suppose the inputs to a + gate are u and v. Every player A holds P,,(YA) and
P,,(YA) (where P,, and P, are random polynomials of degree t with free term u and v
respectively). To compute a share of the output u + v , player A computes P,,+, , (~A) =
P,,(?;i) + P,(YA). A globally commits to P u + , , (y ~) .

Suppose the inputs to a x gate are u and v. Computing P , , , , , (~ A) (where Puxu is a
random polynomial of degree t whose free term is u xu.) can be reduced to the problem
of every pair of players (A,B) computing semi-robustly a two-player function on the
shares they hold P,,(TA) and P , , (~ B) , (see [Galil Haber Yung 87, Van Dem Graaph
etal. 87, Beaver Goldwasser $81). To compute a two-player function semi-robustly has
been reduced to two-player oblivious transfer in [Kilian 881. Instead of the two-player
oblivious tarnsfert called for in [Kilian 881’s construction, the Commit - Obl’ avaous ‘ -

Transfer(A,B, ...) protocol which was set up in the preprocessing stage is used.
Every message of the player sent while computing the x gate must be accompanied

by a zero-knowledge proof that it has been computed and sent correctly with respect
to the inputs globally committed and the messages previously received from other
players both in private and by broadcast. This is possible as all private messages
sent during the commitment and computation stage have been globally committed
(as all these messages were sent using the private communication lines set up in
preprocess-private-communication.)

5.4 Acknowledgements
We are gratelful to Mihir Bellare, Joe Kilian, and Silvio Micali for very useful discus-
sion.

References
[l] D. Beaver, S. Goldwasser. Multi Party Fault Tolerant Computation with Faulty

Majority, proceedings of Crypto89, Santa Barbara, CA, August 1989.

92

[2] D. Beaver, S. Goldwasser. Multi Party Fault Tolerant Computation with Faulty
Majority Based on Oblivious Transfer, proceedings of FOCS89, Duke, NC, Oc-
tober 1989, pp. 468-473.

[3] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault- Tolerant Distributed Computation. Proc. of 20th STOC 1988,
pp. 1-10.

[4] Ben-Or, Michael, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian,
Silvio Micali, Phillip Rogaway, “IP is in Zero-Knowledge,’’ Proceedings, Advances
in Cryptology, Crypto 1988.

[5] Rabin, T. and M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority.” Proc. of 2lSt STOC, ACM, 1989.

[6] Blakely,T.. Security Proofs for Information Protection Systems. Proceedings of
the 1980 Symposium on Security and Privacy, IEEE Computer Society Press,
NY, pp. 79-88, 1981.

[7] Brassard, Gilles, Claude CrCpeau, and David Chaum, “Minimum Disclosure
Proofs of Knowledge,” manuscript.

[S] Brassard, Gilles, Claude CrBpeau, and Jean-Marc Robert. “Information Theo-
ritic Reductions Among Disclosure Problems,” Proceedings of the 27th FOCS,
IEEE, 1986, 168-173.

[9] E. Brickell, D. Chaum, I. Damgaard, J. van de Graaf. Gradual and Verifiable
Release of A Secret. CRYPTO 1987.

[lo] D. Chaum, C. Crepeau, I. Damgaard. Multiparty Unconditionally Secure Proto-
cols. Proc. of 20fh STOC 1988, pp. 11-19.

[ll] Chaum, David, Ivan Damgard, and Jeroen van de Graaf. “Multiparty Compu-
tations Ensuring Secrecy of Each Party’s Input and Correctness of the Output,”
Proceedings of CRYPTO ’85, Springer-Verlag, 1986, 477-488.

[12] R. Cleve. Limits on the Security of Coin Flips When Half the Processors are
Faulty. STOC 1986.

[13] Cohen, Fischer. A Robust and Verifiable Cryptographically Secure Election.
FOCS 1985.

[14] C. Crepeau and J. Kilian. Achieving Oblivious Transfer Using Weakened Security
Assumptions. FOCS 1988.

[15] CrBpeau Claude, “On the Equivalence of Two Types of Oblivious Transfer”,
Cr yp to8 7.

93

[16] B.Chor, S. Goldwasser, S. Micali, B. Awerbuch. Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults. FOCS 1985.

[17] B. Chor, M. Rabin. Achieving Independence in Logarithmic Number of Rounds.
PODC 1986.

[18] Even S., Goldreich O., and A. Lempel, A Randomized Protocol for Signing Con-
tracts, CACM, vol. 28, no. 6, 1985, pp. 637-647.

1191 Fischer M., Micali S., and Rackoff C. Oblivious Transfer Based in Quadratic
Residuosity, Unpublished.

[20] Z.Gali1, S.Haber, M.Yung. Cryptographic Computation: Secure Fault-Tolerant
Protocols and the Public Key Model. Proc. C R Y P T 0 1987.

[all 0. Goldreich, S. Micali, A. Wigderson. How to Play Any Mental Game, or A
Completeness Theorem for Protocols with Honest Majority. Proc. of lgth STOC
1987, pp. 218-229.

[22] Goldreich, O., Vainish, R. “How to Solve any Protocol Problem: An Efficiency
Improvement”, Crypto 87.

[23] Goldwasser, Micali, Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM J. of Comp 1989.

[24] S.Haber. Multi-Party Cryptographic Computation: Techniques and Applications.
Ph.D. Thesis, Columbia University, 1988.

[25] Impagliazzo, Russell and Moti Yung, “Direct Minimum Knowledge Computa-

[26] Kilian, Joe, “On The Power of Oblivious Transfer,” Proceedings of the 20th
STOC, ACM, 1988, pp. 20-29. Also appeared in Uses of Randomness In Al-
gorithms and Protocols, An ACM Distinguished Dissertation 1989.

tions,” Proceedings, Advances in Cryptology, Crypto 1987.

[27] J. Kilian. S. Micali. P. Rogaway Security Dejinitions for MuZti Party Protocols.

[28] Micali Luby Rackoff 83. The Miraculous Exchange of a Secret bit, Proc. of FOCS

In Preparation.

1983.

I291 A. Shamir. How to Share a Secret. CACM 22, 612-613, 1979.

[30] Yao, Andrew C. “Protocols for Secure Computations,” Proceedings of the 23’d
FOCS, IEEE, 1982, 160-164.

[31] Yao, Andrew C. “How to Generate and Exchange Secrets,” Proceedings of the
27th FOCS, IEEE, 1986, 162-167.

	Fair Computation of General Functions in Presence of Immoral Majority
	Introduction
	Conventions
	Faulty Versions of Protocols
	Legal and Moral Faults
	Robust and Fair Protocol
	Stable Functions and Commitment Protocols

	The Merits of the Definitions
	Main Result: Robust for Minority Protocols
	How to Use the Oblivious Transfer Primitive
	The Oblivious Transfer Assumption
	Preprocessing Stage
	Global Commitment and Decommitment
	Decommitting Sums of Globally Committed Bits
	Private Communication Lines
	Global Oblivious Transfers

	Input Commitment and Computation Stages
	Computation

	Acknowledgements
	References

