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Abstract

Bit commitment schemes are central to all zero-knowledge protocols
[GMR89] for NP-complete problems [GMW86, BC86a, BC86b, BCC88,
BCY89, FS89, etc.]. One-way group actions is a natural and powerful primi-
tive for the implementation of bit commitment schemes. It is a generalization
of the one-way group homomorphism [IY88], which was not powerful enough
to capture the bit commitment scheme based on graph isomorphism [BC86b].
It provides a unified theory for all the known bit commitment schemes that offer
unconditional protection for the originator of the commitments, and for many
of those that offer her statistical protection. (Unconditional protection means
that the value of the bit committed to is always perfectly concealed. Statistical
protection either means that this is almost always the case, or that only an arbi-
trarily small probabilistic bias about this bit can leak; in either cases, statistical
protection must hold even against unlimited computing power.)

Bit commitment schemes based on one-way group actions automatically
have the chameleon property [BCC88] (also called trap-door [FS89]), which is
useful for the parallelization of zero-knowledge protocols [BCY89, FS89]. More-
over, these bit commitment schemes allow the originator of two commitments
to convince the receiver that they are commitments to the same bit, provided
that this is so, without disclosing any information about which bit this is.

In addition, one-way group actions are also a natural primitive for the im-
plementation of claw-free pairs of functions [GMRi88].

1 Bit commitment schemes

Central to all zero-knowledge interactive protocols [GMR89] for NP-complete state-
ments [GMW86, BC86a, BC86b, BCC88, BCY89, FS89, etc.] is the notion of bit
commitment scheme. The purpose of a bit commitment scheme is to allow one party,
the originator, to commit to the value of a bit in a way that prevents the other party,
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the receiver, from learning it without the first party’s help, but also in a way that 
prevents the first party from changing its value. At any time after she has commit- 
ted to a bit, the originator can show the receiver which bit she had committed to, a 
process known as opening the bit commitment. Of course, she should not be able to 
cheat by “changing her mind”, i.e. not showing the genuine bit that she had in mind 
when she committed. 

Bit commitment schemes can be implemented in a great many ways (see [BCCSS] 
for several examples). When they are based on cryptography and computational 
complexity (rather than being implemented through physical protection, such as us- 
ing quantum cryptography [BB84, BC901 or sealed envelopes), they are necessarily 
imperfect. This imperfection can take place in two very different ways. If it is im- 
possible for the originator to change her commitments in the receiver’s back, then it 
can be at best infeasible (i.e. within a reasonable amount of time) for the receiver to 
determine the bits committed to without the originator’s help. Such bit commitment 
schemes are called unconditionally binding, or unconditionally secure for the receiver. 
Conversely, if it is impossible for the receiver to determine the bits committed to by 
the originator, or even to obtain partial or probabilistic information about them, then 
it can be at best infeasible for the originator to cheat and change her mind about a bit 
she had committed to when (and if) she subsequently decides to open the commit- 
ment. Such commitments are called unconditionally concealing, or unconditionally 
secure for the originator. 

If the impossibility in the above definition is replaced by a near impossibility, the 
scheme is statistically (rather than unconditionally) binding or concealing, whichever 
the case may be. By “nearly impossible”, we mean an event that can occur only 
with arbitrarily small probability, regardless of the computing power of the parties 
under consideration. A bit commitment scheme can be statistically concealing in 
two different ways. It could be that the receiver is expected to learn an arbitrarily 
small fraction of one bit of information about the bit committed to [IN89], or it 
could be that he has an arbitrarily small probability of learning the bit with certainty 
[Cha86, BC86b, NOVYSO, etc.]. Statistically concealing bit commitment schemes 
that fall in the second category usually require a cheating receiver to be daring in the 
sense that he is guaranteed to learn nothing unless he is willing to risk being caught 
cheating by the originator with near certainty. 

All the known perfect zero-knowledge interactive protocols for statements about 
NP-complete problems are based on unconditionally concealing bit commit- 
ment schemes [BCCSS, BCY891. Similarly, statistically zero-knowledge interactive 
protocols can be obtained from statistically concealing bit commitment schemes 
[Cha86, BC86bl. In this paper, we are concerned exclusively with unconditionally 
and statistically concealing bit commitment schemes. We also restrict our attention 
to bit commitment schemes that can be implemented in practice by probabilistic 

We shall refer to  the originator as a “she” and to  the receiver as a “he”. 
These perfect zero-knowledge protocols are not interactive proof-systems in the sense of 

[GMR89] because they allow a prover with unlimited computing power to  cheat by changing her 
commitments. Hence, they are merely computationally convincing. 
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polynomial-time originator and receiver. In particular, we require of an uncondition- 
ally concealing bit commitment scheme that it be impossible for the receiver to learn 
anything about the bits committed to even if he had unlimited computing power, yet 
probabilistic polynomial-time computing power must be sufficient in order to carry 
out the honest protocol. Read (Bra911 for a comprehensive survey of bit commitment 
schemes, including those that require one of the players to be unreasonably powerful. 

As long as we do not consider bit commitment schemes that cannot be imple- 
mented in practice, it is known that unconditionally binding bit commitment schemes 
exist if [ILL89, Nao89, His901 and only if [ILSS] one-way functions exist. It was re- 
cently shown that one-way permutations (or even one-way functions with known en- 
tropy) are sufficient to implement statistically concealing bit commitment schemes 
[NOVYSO]. It would be very nice if unconditionally concealing bit commitment 
schemes could be designed under the mere assumption that one-way functions ex- 
ist. Although we are not able to do this, here we show that it is sufficient to assume 
the existence of one-way certified group actions, which is the main new notion intro- 
duced in this paper. This is a generalization of the one-way group homomorphism 
introduced in [IY88] and used in [BCYSS] for the purpose of implementing bit com- 
mitment schemes. One-way certified group actions are sufficiently general to capture 
all the known unconditionally concealing bit commitment schemes. Moreover, one- 
way uncertified group actions capture many of the statistically concealing bit commit- 
ment schemes, but not the schemes of [IN89, NOVYSO]. Also, we wish to emphasize 
that bit commitment schemes based on one-way group actions are truly practical. 

Beyond their primary purpose, some bit commitment schemes also offer additional 
capabilities. For instance, a bit commitment scheme has the equality property if, given 
two different commitments to the same bit, the originator can easily convince the 
receiver that these commitments are indeed both to the same bit, without disclosing 
anything about whether this bit is a 0 or a 1 (by “easily”, we mean that interaction is 
not needed; otherwise all bit commitment schemes would have the equality property). 
The unequality property is defined similarly. Bit commitment schemes based on one- 
way group actions automatically have the equality property, but not necessarily the 
unequality property. 

Another useful additional property that some bit commitment schemes have was 
first put forward by Brassard, Chaum and CrCpeau under the name of “chameleon 
property” [BCCSS]. After reading [BCCSS], Shamir proposed to call it the “trap-door 
property” [FS89], and we agree that this is a more self-explanatory terminology, albeit 
less poetic. A bit commitment scheme has the trap-door property if, in addition to the 
usual requirements of bit commitment schemes, there exists a secret, known as the key 
to the trap-door, that would allow the originator to cheat her commitments any time 
she wanted if only she knew this key. More precisely, knowledge of this key would make 
it possible for her to offer fake “commitments” that she could subsequently “open” 
either way at her choice of the moment, and these fake commitments are information- 
theoretically indistinguishable from genuine ones. Bit commitment schemes that have 
the trap-door property are interesting because they make it possible to implement 
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zero-knowledge interactive protocols in a constant number of rounds [BCY89, FS891. 
Clearly, the trap-door property cannot exist for bit commitment schemes that are 
unconditionally (or even statistically) binding. Bit commitment schemes based on 
one-way group actions automatically have the trap-door property. 

The first unconditionally concealing bit commitment scheme ever proposed is re- 
viewed in the Appendix. It possesses the equality, unequality and trap-door proper- 
ties. We encourage readers unfamiliar with the notion of bit commitment schemes to 
read the Appendix before proceeding with the next section. 

2 One-way group actions 

Let us recall what a group action is. Let G be a finite group whose operation is simply 
denoted by juxtaposition and let E denote the identity element of G. Let S be any 
finite set. We say that G acts on S if each element of G induces a permutation of 
S such that the permutation induced by g h  is the composition of the permutations 
induced by g and by h, where g and h are any elements of G. More formally, we have 
a function T : G + (S + S )  such that 

Given condition (1)) it is elementary to prove that condition (2) is equivalent 
to saying that the function induced by the group identity element is the identity 
function. In other words, G act on S through T if and only if conditions (1) above 
and (3) below are satisfied. 

To avoid cluttering the text with parentheses, it is customary (but sometimes 
confusing -see section 6.2) to denote (T(g) ) (s )  simply by gs. Therefore, condition 
(1) can be restated simply as (gh)s = g ( h s ) .  (Despite the appearance of this formula, 
it does not really have anything to do with associativity!) 

Let us now suppose that G acts on S.  Let so be a fixed element of S.  The group 
action is so-one-way if 

0 Membership in G and S can be tested efficiently. 

0 It is feasible to draw randomly within G with uniform distribution (this condi- 
tion can be relaxed somewhat). By g ER G, we mean that g is chosen randomly 
within G with uniform distribution. 
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0 The group operation, the group inversion, and the group action can be computed 
efficiently. In other words, given any g E G, h E G and s E S ,  it is easy to 
compute gh, g-l, and gs. 

0 Consider g ER G and let t = gso. Given so and t, it is infeasible to compute any 
4 such that as0 = t ,  except with negligible probability, where the probability is 
taken over all choices of g and possibly over the random choices taken by the 
efficient algorithm trying to defeat this property. Note that the problem is not 
to find some 4 # 9, which may or may not exist. 

A group action is one-way if it is feasible to find an so E S such that the group action 
is so-one-way. Such an so will be referred to as the source of the action. Given any 
s E S ,  let Q ( s )  denote the orbit { t  E S I (39 E G)[t = g s ] } .  A one-way group action 
whose source is so is certified if 

0 Given any t E S ,  it is easy to decide whether or not t E &(so). Of course, the 
easy thing is to decide on the existence of a g E G such that t = gso, not to 
actually discover any such g. 

3 Commitments with certified group actions 

Let G be a group and S be a set, and consider a one-way certified group action. 

0 In order to set up a bit commitment scheme, the receiver chooses a source so 
for the action and a go E R  G. He computes s1 = goso and he gives so and s1 to 
the originator. The originator checks that so E S ,  s1 E S, and s1 E &(so). 

0 In order to commit to bit z E (0, l}, the originator chooses g E R  G and com- 
putes b = gs,. She keeps g as her witness to the effect that b is a commitment 
to bit x. 

0 In order to open a commitment b as bit 2, the originator shows the corresponding 
witness g. The receiver checks that b = gs,. 

Commitments to 0 are produced by computing gso whereas commitments to 1 
are produced by computing gsl = g(g0so) = (ggo)so, where g E R  G. Therefore, 
such commitments are unconditionally concealing because the effect of computing 
990 for a fixed go E G and a g chosen randomly with uniform distribution within G 
is in fact to choose randomly an element of G with uniform distribution. In other 
words, nothing distinguishes commitments to 0 from commitments to 1, except for 
the witness known by the originator alone. The condition that the one-way group 
action should be certified is crucial here: if the receiver were able to get away with 
giving the originator some s1 4 &(so), the set of commitments to 0 would be disjoint 
from the set of commitments to 1. 
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On the other hand, assume for a contradiction that the originator is able to open 
a given commitment b both as a 0 and as a 1. In order to do this, she must know xo 
and x1 in G such that b = xis,. But then xT1xoso = ~ 1 ~ x 1 ~ 1  = s1. If the originator 
computes g = xT1zo, she will have found a g E  G such that gso = sl, which is precisely 
what was assumed to be infeasible by the one-wayness of the action. 

Bit commitment schemes based on one-way certified group actions automatically 
have the trap-door and equality properties. The trap-door property is obvious, with 
go as key. To see the equality property, let bl and bz be commitments to the same 
bit, and let g1 and g2 be the originator's witnesses for bl and b2, respectively. If the 
originator provides the receiver with h = gzg;', the receiver can check that hbl  = bz. 
We leave it for the reader to verify that the only way the originator can provide an 
h E G that transforms bl into bz is if she can open both commitments to show the 
same bit (unless she can open neither one of them!). We also leave it for the readcr 
to verify that no additional information about which way these commitments can be 
opened leaks when the originator gives h to the receiver. 

Curiously, bit commitment schemes based on one-way certified group actions do 
not seem to feature the unequality property in general, whereas the bit commitment 
scheme based on the more specific certified discrete logarithm assumption does (see 
the Appendix). 

4 Commitments with uncertified group actions 

Even though it is crucial that the one-way group action be certified if it is to be 
used to implement an unconditionally concealing bit commitment scheme, this is not 
necessary if one is satisfied with a statistically concealing bit commitment scheme. 
Therefore, even a one-way group action that is not certified can be used to imple- 
ment a computationally convincing statistically zero-knowledge interactive protocol 
for an arbitrary N P  statement. This is obvious if one is not concerned much about 
practical considerations. Indeed, the fact that s1 E &(so) is an NP-statement whose 
witness go is known of the receiver (where go, so and s1 are as in the first step of 
the unconditionally concealing commitment described is section 3). Therefore, the 
receiver can use a general computationally zero-knowledge interactive proof-system 
[GMW86, BCC881 in order to convince the originator beyond any reasonable doubt 
that s1 E &(so). In this sub-protocol, the receiver will need to originate uncondition- 
ally binding bit commitments, which is possible by the work of [ILL89, Nao89, HbsSO] 
since the assumed existence of a one-way group action clearly implies that of a one- 
way function. 

A moment's thought allows us to do much better. The key observation is that 
the problem of deciding membership in &(so) is necessarily random self-reducible 
[AL83, AFK89, TW87]. This is sufficient for using the general constant-round perfect 
zero-knowledge interactive proof-system of [BM090], which allows the receiver (with- 
out any need for an unproved assumption) to convince the originator that s1 E Q(so) .  
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This approach is vastly more efficient for practical purposes than that suggested in the 
previous paragraph. Moreover, it is carried out in a constant number of rounds, which 
is crucial if the resulting trap-door statistically concealing bit commitment scheme 
is to be used as main building block for a constant-round computationally convinc- 
ing statistically zero-knowledge interactiye protocol for an arbitrary NP statement 
[BCYSS, FS891. 

5 Claw free pairs of functions 

One-way group actions can also be used in order to implement claw free pairs of func- 
tions [GMRiSS], which is not surprising because there is an obvious direct connection 
between such pairs and bit commitment schemes (implicit in [IY88]). Let G be a 
group and S be a set, and consider a one-way group action. Let so be a source for the 
action and let go be a random element of G. Consider the functions f1,f2 : G + S 
defined by fi(g) = gso and f2(g) = ggOS0. Clearly, finding a “claw” gl,g2 E G such 
that fi(g1) = fi(g2) is as hard as finding a g E G such that gso = goso (possibly 
g = go). Hence, finding such a claw is infeasible for anyone who knows so and goso 
(which is necessary to compute fi and fi), but who does not know go. The action 
should moreover be certified if it is important that the party unable to find a claw 
should nonetheless be certain that such claws exist. 

6 Examples of one-way group actions 

6.1 Based on the discrete logarithm [CDG88, BKKSO] 

Assuming the certified discrete logarithm assumption (see the Appendix), a one- 
way certified group action can be built as follows. Let p be a prime for which the 
factorization of p - 1 is known and let a be a generator for Zi. Let G be Z p - l ,  let 
S be Z;, and let so be 1. Given g E G and s E S, the group action is defined as 
gs = sag. It is easy to see that all the requirements for a one-way certified group 
action are satisfied. In this case, the one-wayness of the group action follows directly 
from the certified discrete logarithm assumption and the one-way group action is 
certified because recognizing elements of &(so) is trivial since S = Q(s0) follows from 
the fact that a is a certified generator. 

6.2 Based on factoring [BC86b] 

Assuming that factoring large RSA integers is infeasible, a one-way group action can 
be built as follows. Let n be the product of two large distinct primes (in practice, 
n would be chosen by the receiver, unless an authority can be trusted for choosing 
n and never disclosing its factors). Let both G and S be Z:, the multiplicative 
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group of invertible integers modulo n. Let SO be 1. Given any g E G and s E S, 
the group action is defined as gs = g2s  (please do not allow this mixed notation to 
confuse you.. . the g s  on the left of the equation means “the result of group element 
g acting on set element s”, whereas the g 2 s  on the right refers to one squaring and 
one multiplication in Z:). Once again, it is easy to see that all the requirements for a 
one-way group action are satisfied. The one-wayness of the action comes from the fact 
that extracting square roots modulo n is as hard as factoring n, which we assumed 
to be infeasible. 

Although this group action is probably not certified, it has a significant advantage 
in practice over the group action based on the discrete logarithm: it is much more 
efficient to compute two modular multiplications than one exponentiation. 

6.3 Based on group homomorphism [BCYSS] 

Consider any one-way group homomorphism h : X --f Y (see ICALP version of 
[BCY89] for a definition) such that membership in X and Y can be tested efficiently 
(an important condition forgotten in [BCY89]). Let G be X, S be Y ,  and so be 
the identity element of Y .  Given g E G and s E S ,  the group action is defined as 
g s  = s * h ( g ) .  Details that this defines a one-way certified group action are left for 
the reader. 

6.4 Based on graph isomorphism [BC86b] 

The notion of one-way group homomorphism described in [BCY89] provides a gen- 
eralization of the bit commitment scheme based on the certified discrete logarithm 
assumption, but it is probably not as general as one-way certified group actions. 
Indeed, we now describe a one-way group action that does not correspond to a one- 
way group homomorphism. The one-wayness of our group action depends on a cryp- 
tographic assumption introduced in [BC86b]. Unfortunately, this group action does 
not seem to be certified. 

Let n be a fixed large integer. Let G be the group of permutations of X ,  = 
{1,2,. . . , n} under composition (where ( g h ) ( i )  = h ( g ( i ) ) ) .  Let S be the set of all 
graphs with X,, as vertex set. Let us assume the existence of a hard graph in the 
sense of [BC86b]: a graph is hard if it is infeasible to figure out an isomorphism 
between it and a random isomorphic copy of it, except with negligible probability. 
Let so E S be such a hard graph. Given g E G and s = (X, ,E)  E S ,  the group 
action is defined as gs = ( X , , k ) ,  where (u,o) E E if and only if ( g ( u ) , g ( v ) )  E E.  
This group action is one-way by assumption. Intuitively, the reason why it cannot be 
recast as a group homomorphism is that there is no natural group operation that one 
could put on S .  
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7 Unifying perfect zero-knowledge proof-systems 

When the notion of zero-knowledge proof-systems was presented and examples of 
languages were given, an intriguing fact was observed by many. That is, the proof- 
systems used to prove that membership in various languages can be proved in perfect 
zero-knowledge are very “similar”. These languages are in two groups, which may 
be called “positive examples” and “negative examples”. For instance, some posi- 
tive examples are quadratic residuosity [GMR89], graph isomorphism [GMW86] and 
proving an element to be a generator, i.e., primitivity [TWS7]. The corresponding 
negative examples (in the same works, respectively) are: quadratic non-residuosity, 
graph non-isomorphism and not-generated (by a ) ,  i.e., the language Zi- < a > p .  

Viewing all these problems as group actions ’, we can show that indeed the perfect 
zero-knowledge proof-systems are instances of two basic protocol schemes; one scheme 
for the positive examples and another scheme for the negative ones. This shows that  
the similarity of the original protocols is not just a matter of coincidence. This 
observation is not new for the positive examples: Burmester, Desmedt, Piper and 
Walker have developed an algebraic framework that unifies a large number of zero- 
knowledge proof systems (in which the use of group actions is but a special case) 
[BDPWSg]. A similar observation was also made by Blum and Kannan with respect 
to program checkers [BK89]. In this section, we review the use of group actions to 
unify the positive examples, and we extend it to the negative examples. 

The protocol scheme which gives as instances the positive examples demonstrates 
that an element (or a set of elements) can be in the range of a group action acting on a 
given source. Showing an element to be a quadratic residue is showing that the group 
of residues acting on the unity (3 = 1) includes that element, namely that the group 
of quadratic residues acting on the input element gives us back the group of quadratic 
residues. The case of graph isomorphism is showing that the group of permutation 
acting on the first input graph includes the second input graph (or its automorphism 
group). Finally, showing primitivity is demonstrating that the claimed generator’s 
group < g > p  acting on 1 gives the entire Z;. These positive examples have been 
previously characterized as “random self-reducible” problems [AL83, AFK89, TW871. 
Independently from our work, the notion of group action has been used by several 
other researchers to implement random self-reducibility [FKNSO, SI901. 

Using group action, one can show that the proof-systems for the so-called nega- 
tive examples are instances of a protocol scheme which demonstrates that one input 
element from a set S1 cannot be in the range of the group action by a group G acting 
on an element from a set S2 as a source (where actions by G on both sets are defined 
and the underlying assumption is that telling apart the two sets 5’1 and 5’2 is hard). 
Notice that there is an information-theoretic difference between these two inputs: two 
non-isomorphic graphs, a quadratic non-residue (which is different from the quadratic 

This section deals with group actions in general, not necessarily those that are one-way, but the 
problem of membership in the set(s) they act upon must be assumed to be hard for the corresponding 
protocols to be interesting. 
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residue s = 1 modulo n) ,  or an element b not generated by another element a in 2; 
(which means that b is not an element in the range of the group generated by a acting 
on s = 1). This difference can be detected by the powerful prover, a fact used in the 
various instances of this proof-system. 

In summary, the group action abstraction helps in generalizing many of the known 
protocols for perfect zero-knowledge proof-systems. 

Open questions 

How general is the notion of one-way group action? Andy Klapper has suggested that 
this notion might extend to that of one-way monoid action. Is there any uncondi- 
tionally concealing bit commitment scheme that could be obtained from a one-way 
monoid action but not a one-way group action? Better yet, can one design an uncon- 
ditionally concealing bit commitment scheme under the only assumption that one-way 
functions exist? If not, what about a statistically concealing bit commitment scheme? 
Recall that one-way permutations or even one-way functions with known entropy are 
sufficient to build a statistically concealing bit commitment scheme [NOVYSO]. Note 
that if one does not insist that the scheme be usable by proba.bilistic polynomial-time 
players, it is known that one-way functions are sufficient to implement statistically 
(but not unconditionally) concealing bit commitment schemes [OVYSO] . 

Conversely, is it possible to design a one-way certified group action (or perhaps 
monoid action) under the sole assumption that unconditionally concealing bit commit- 
ment schemes exist? Notice that a positive answer to this question would imply that 
all unconditionally concealing bit commitment schemes can be made to have the trap- 
door and the equality properties, which would be surprising since this does not seem 
to be the case for statistically concealing bit commitment schemes [IN89, NOVYSO]. 

Finally, are one-way certified group actions really more general than one-way group 
homomorphisms? Recall that our only example of a one-way group action that did 
not correspond to a one-way group homomorphism (section 6.4) was probably not 
certified. 

Appendix: 
Concrete example of a bit commitment scheme 

The first unconditionally concealing bit commitment scheme ever proposed was 
designed independently by Damgkd [CDGSS] and by Boyar, Krentel and Kurtz 
[BKKSO]. We describe it here to provide a concrete example of the type of bit commit- 
ment scheme that can be obtained by one-way certified group actions (see Section 6.1). 

Let us first review some elementary number theory [Kra86]. If p is a prime num- 
ber, let us denote by Z i  the multiplicative group of non-zero integers modulo p ,  
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i.e. { 1,2,. . . , p - 1) under multiplication modulo p .  Similarly, let us denote by Zp-l 
the additive group of integers modulo p -  1, i.e. {0,1,. . . , p -  2) under addition mod- 
ulo p - 1. Notice that Z i  and Zp-l contain the same number of elements. For any 
integers a ,  b and c such that a $ 0 (mod p )  and b = c (mod p - l), we have by 
Fermat’s theorem that ab a‘ (mod p ) .  Therefore, it makes sense to speak of x i  for 
x E 2; and i E Z,-1. An element a of Zf, is called a generator of Z i  if each element of 
2; can be obtained as a power of a. Thus, a is a generator if and only if the function 
e s p ,  : Zp-l --+ Z i  defined by exp,(i) = ai establishes a one-one correspondence. 

In order to set up the bit commitment scheme, the originator and receiver initially 
agree on a large prime p for which they both know the factorization of p - 1 (finding 
large primes p with known factorization of p - 1 can be done efficiently in practice 
[Mau89]). They also agree on a generator Q of Z; . Thanks to their knowledge of the 
factors of p - 1, they can both verify with certainty that p is a prime and that a is 
a generator of Z;. Moreover, the density of generators is high enough that one can 
be found reasonably efficiently by random trial and error. Actually, the parameters 
p and a need not be changed each time a bit commitment scheme has to be set up. 
Rather, they could be in the public domain (together with the factorization of p - 1) 
after having been selected once and for all by an authority that does not need to be 
trusted. Given any i E Z p - l ,  it is easy to compute ai efficiently by a divide-and- 
conquer approach, but no efficient algorithm is known to invert this process (even if 
the factors of p - 1 are known, provided they are not too small [PH78]), an operation 
known as extracting the discrete logarithm. 

Once the parameters p and a have been agreed upon, the receiver chooses a 
random s E Zf, and gives it to the originator. We assume the certified discrete 
logarithm assumption, namely that the originator is not capable of computing the 
discrete logarithm of s while the protocol is in progress (“certified” because the factors 
of p - 1 are known to all parties in order that a be a certified generator - since this 
could make computing the discrete logarithm easier, this assumption is stronger than 
the usual discrete logarithm assumption of Blum and Micali [BM84]; nevertheless, the 
usual assumption is good enough to implement a bit commitment scheme statistically 
secure for the originator). 

In order to commit to bit z E (0, l}, the originator selects a random r E Zp-l 
and she computes b = arsx. She gives b to the receiver but she keeps r as her secret 
witness. Subsequently, if the originator wishes to convince the receiver that b was a 
commitment to bit z, she simply shows him the corresponding witness r.  The receiver 
can then check that indeed 6 = a‘sz. 

Because the function exp, is a one-one correspondence, any element of Z i  can 
be used by the originator as commitment to 0 just as well as to 1, depending only 
on which witness she knows. Moreover, all commitments are randomly and inde- 
pendently distributed according to the uniform distribution over Z i .  Therefore, it is 
information-theoretically impossible for the receiver to distinguish a commitment to 
0 from a commitment to 1, regardless of his computing power. On the other hand, 
the originator is able to cheat and open a given commitment both ways if and only if 
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she knows (or can efficiently compute) the discrete logarithm of s, which we assumed 
to  be infeasible for her. 

A moment’s thought suffices t o  see that this bit commitment scheme is trap-door, 
and that  its key is the  discrete logarithm of s. Moreover, i t  is easy to see that  this 
bit commitment scheme has both the  equality and the unequality properties. 
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