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ABSTRACT 

Many of the fast methods for factoring integers and computing discrete logarithms 

require the solution of large sparse linear systems of equations over finite fields. This paper 

presents the results of implementations of several linear algebra algorithms. It shows that 

very large sparse systems can be solved efficiently by using combinations of structured 

Gaussian elimination and the conjugate gradient, Lanczos, and Wiedemann methods. 

1. Introduction 

Factoring integers and computing discrete logarithms often requires solving large systems 

of linear equations over finite fields. General surveys of these areas are presented in 

[14, 17, 19]. So far there have been few implementations of discrete logarithm algorithms, 

but many of integer factoring methods. Some of the published results have involved solving 

systems of over 6 x 104 equations in more than 6 x I 04 variables [ 12]. In factoring, equations 

have had to be solved over the field G F(2 ). In that situation, ordinary Gaussian elimination 

can be used effectively, since many coefficients (either 32 or 64 depending on machine word 

size) can be packed into a single machine word, and addition can be implemented as the 

exclusive-or operation. Even so, the large size of the systems to be solved has often caused 

storage problems (a 6 x 104 by 6 x 104 system requires approximately 110 million words 

of storage on a 32-bit machine), and it has often been difficult to obtain a correspondingly 

large amount of computer time. In many cases, the linear systems were purposefully kept 
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smaller than would have been optimal from the standpoint of other parts of the factoring 

algorithm, just to avoid the linear algebra difficulties. 

Clearly we cannot hope to be able to solve future systems (even in GF(2)) using 

only ordinary Gaussian elimination. As the size of integers being factored increases, so 

does the size of the system of equations which must be solved. In addition, the recently 

discovered number field sieve currently requires (when applied to factoring general integers) 

the solution of equations over the integers, not just modulo 2. (The best way to obtain such 

a solution appears to be either to solve the system modulo many small or moderate primes 

and then apply the Chinese remainder theorem, or else to solve it modulo a particular prime, 

and then lift that solution to one modulo a power of that prime.) In the case of the number 

field sieve applied to general integers, the linear algebra problem is currently one of the 

critical bottlenecks that keep it impractical. 

Even in cases where the equations have to be solved modulo 2, linear algebra difficulties 

are becoming a serious bottleneck. As an example, the very recent factorization of F9 = 

2t' + I = 2m+ I (using a special form of the number field sieve for integers of this form) 

by A. Lenstra and M. Manasse involved solving a system with dimension n ::::; 2 x 105 . 

The attack on the RSA challenge cipher (which will require factoring a 129 decimal digit 

integer) that is currently planned using the quadratic sieve might require solving a system 

with n::::; 4 x 105 . 

For discrete logarithm algorithms, the linear algebra problem has always seemed to be 

even more imp011ant than in factoring, since the equations have to be solved modulo large 

primes. The largest system that has been solved was of size about 1.6 x 104 by 1.6 x 104 , 

modulo 2 127
- 1, which arose in connection with discrete logarithms in GF(2127

) [3, 17]. 

For an n x n system with n ::::; 105, ordinary Gaussian elimination takes about n3 ::::; 

1015 operations. Modem supercomputers are capable of between 108 and 109 integer 

operations per second, so 101
' operations might take a few weeks to a few months on such 

a machine, if one matrix operation took one machine instruction. In practice, since up to 

64 matrix operations are performed in a single supercomputer operation, the required time 

decreases substantially. However, for those without access to supercomputers, time can 

easily be a barrier. It is possible to obtain 1015 machine operations for free, as that is the 

approximate amount of work that the recent integer factorization achieved by A. Lenstra 

and M. Manasse [12] required. However, that effort involved a very decentralized and only 

loosely coordinated computation on hundreds of workstations. This is acceptable for the 

sieving stage of the quadratic sieve algorithm, but it causes problems when one tries to 

solve a system of linear equations: solving such systems requires very close coordination 
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and errors propagate quickly, destroying the validity of the final result. Thus the linear 

algebra phase requires the use of a single machine (although it can be a massively parallel 

computer), and it can often be hard to obtain access to one that is fast enough. Memory 

requirements also present serious difficulties. If the problem is to find a solution modulo 

2, the full matrix has I 010 bits, or I ,250 megabytes. Only a few supercomputers have this 

much main memory. On all other machines, one has to work on the matrix in blocks, which 

slows down the operation considerably. 

Both the time and space requirements become much more serious when solving equa­

tions modulo a "moderate size'' prime p. If p;::::; 2100
, the operation count goes up from 1015 

to 1019 , which is prohibitive even for a supercomputer. The storage requirements increase 

to 1012 bits, which is 125 gigabytes, considerably more than any existing machine has. 

Fast matrix multiplication algorithms do not offer much hope. The Strassen n 2 
R 

1 method 

[21] is practical for n on the order of several hundred, but does not save enough. Later 

methods, of which the Coppersmith-Winograd n 2
·
376 algorithm rs1 is currently the fastest, 

are impractical. 

If the equations that arise in factoring and discrete log algorithms were totally random, 

there would be little hope of solving large systems. However, these equations, while they 

appear fairly random in many respects, are extremely sparse, with usually no more than 

50 non-zero coefficients per equation. Moreover, they are relatively dense in some parts, 

and very sparse in others. Previous Gaussian elimination implementations, as is mentioned 

below, already take advantage of some of these features. In addition, several special 

systematic methods have been developed to take advantage of this sparsity. They are: 

1. structured Gaussian elimination (also called intelligent Gaussian elimination) [ 17], 

2. the conjugate gradient and Lanczos algorithms [7, 17], 

3. the Wiedemann algorithm [22]. 

Structured Gaussian elimination was designed to reduce a problem to a much smaller one 

that could then be solved by other methods. The other methods have running times that are 

expected to be of order not much bigger than n2 for a sparse n x n system. Theoretically, 

the Wiedemann algorithm is the most attractive of all these techniques, since it can be 

rigorously proved to work with high probability (if one randomizes certain choices in the 

initial stages of the algorithm), while the other methods are only heuristic. Asymptotically, 

it was thought for a long time that the problem of solving large linear systems was the 

crucial bottleneck determining how algorithms such as the quadratic size performed [18]. 
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This view then changed, as the Wiedemann algorithm showed that linear algebra was only 

about as important in determining the asymptotic complexity of algorithms such as the 

quadratic sieve as other steps. 

To the authors' knowledge, the Wiedemann algorithm has never been tested on a large 

system. The conjugate gradient and Lanczos methods have been tested [7, 17], but only 

on fairly small systems. Structured Gaussian elimination was tested on some very large 

systems in [17], but those tests used simulated data, while the runs on real data derived 

from a factoring project solved only fairly small systems. More recently, this method was 

implemented and used to solve some fairly large binary systems by Pomerance and Smith 

[20]. Even more recently, a version of this method was used by A. Lenstra and M. Manasse 

in their factorization of F9 . 

This paper reports on the performance of some of these algorithms on several very 

large sparse systems derived from factoring and discrete logarithm computations. The 

largest of the systems that were solved had about 3 x 105 equations in about 105 unknown, 

modulo a prime of 191 bits; this system arose in the computation of discrete logarithms 

in a certain prime field [I 0]. The basic conclusion is that the conjugate gradient and 

Lanczos algorithms have essentially the same performance and are very effective in finite 

fields. One of their advantages is that they use relatively little space. However, even these 

algorithms are too slow to tackle very large problems. The Wiedemann algorithm (which 

was not implemented) has modest space requirements, almost exactly the same as those of 

the conjugate gradient and Lanczos methods. Its running time is likely to be comparable 

to those of the conjugate gradient and Lanczos algorithms, with the precise comparison 

depending on the architecture of the computer and implementation details. 

We have also found that structured Gaussian elimination is very effective in reducing a 

large, sparse problem to a much smaller one. Structured Gaussian elimination takes very 

little time, and can be implemented so as to take very little space. When dealing with 

a large sparse system modulo a prime, it appears that the best procedure is to first apply 

structured Gaussian elimination to obtain a smaller system that is still sparse, and then 

to solve the smaller system with one of the conjugate gradient, Lanczos, or Wiedemann 

algorithms. When working with equations modulo 2, it is probably better to use ordinary 

Gaussian elimination for the final step, or else one can use conjugate gradient, Lanczos, or 

Wiedemann for the entire problem. 

Section 2 describes the data sets that were used in the computations, as well as the 

machine on which the algorithms were run. We describe in Section 3 the Lanczos and 

conjugate gradient algorithms, and their performance. Section 4 briefly discusses the 
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Wiedemann algorithm. Structured Gaussian elimination is detailed in Section 5 

2. Machines and data 

All computations reported in this paper were carried out on a Silicon Graphics 40-220 

computer. It has 4 R3000 MIPS Computers, Inc., 25 MHz processors, each rated at about 

18 mips, or 18 times the speed of a DEC VAX 11n80 computer (and about 1.3 times the 

speed of a DECstation 3100). The parallel processing capability of this system was not 

used; all times reported here are for a single processor. This machine has 128 Mbytes of 

main memory. 

All programs were written in C or Fortran. They were not carefully optimized, since the 

aim of the project was only to obtain rough performance figures. Substantial performance 

improvements can be made fairly easily, even without using assembly language. 

Table 1 describes the linear systems that were used in testing the algorithms. Data sets A 

through J were kindly provided by A. Lenstra and M. Manasse, and come from their work 

on factoring integers [12]. Sets A, Band C result from runs of the multiple polynomial 

quadratic sieve (mpqs) with the single large prime variation, but have had the large primes 

eliminated. Set D also comes from a run of mpqs, but this time the large primes were still 

in the data (except that equations with a large prime that does not occur elsewhere were 

dropped). Set E comes from a factorization that used the new number field sieve, and 

set E I was derived from set E by deleting 5000 columns at the sparse end of the matrix. 

(Set El was created to simulate a system that has more extra equations than E does, but 

has comparable density.) Sets F and G derive from runs of ppmpqs, the two large prime 

variation of mpqs [13]. Both sets arose during the factorization of the same integer; set G 

was obtained by running the sieving operation longer. Sets H and I come from other runs 

of ppmpqs (set I was produced during the factorization of the 111 decimal digit composite 

cofactor of 7146 + 1 ). Set J was produced by the number field sieve factorization of F9• All 

of these data sets (A-J) were tested modulo 2 only. 

Data set K was obtained in the process of computing discrete logarithms modulo a 

prime p of 192 bits [10], and had to be solved modulo Sl (a prime of 191 bits) and modulo 

2. Set K was tested modulo both numbers. Sets KO through K6 and L were derived from 

set K. Set K2 was derived by deleting the 144,000 equations from F that had the highest 

number of non-zero entries (weiRht). Set K4 was derived from K by deleting the 144,000 

equations that had the lowest weights. Sets KO, Kl, K3, K5, and K6 were obtained 

by deleting randomly chosen equations from K. (The reason the number of unknowns 
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Table 1: Large sparse sets of equations 

Number of Number of 
Average Number of 

Name Non-zeros per 
Equations Unknowns Equation 

A 35,987 35,000 20.4 
-------

B 52,254 50,001 21.0 
(' 65,518 65,500 20.4 
D 123,019 106,121 11.0 
r; 82,470 80,015 47.1 
Fl 82,470 75,015 46.6 
F 25,201 25,001 46.7 

f----
G 30,268 25.001 47.9 
H 61,343 30,001 49.3 
l 102,815 80,001 43.2 
.J 226,688 199,203 48.8 
K 288,017 96,321 15.5 

[\'() 216,105 95,216 15.5 
K1 165,245 93,540 15.5 
K2 144,017 94,395 13.8 
ld 144,432 92,344 15.5 
K4 144,017 89,003 17.1 
K5 115,659 90,019 15.5 
K6 101,057 88,291 15.5 
L 7,262 6,006 80.5 
lvf 164,841 94,398 16.9 
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varies in these sets is that in sets K, KO, ... , K6, only the unknowns that actually appear 

in the equations are counted.) Set L was derived from set ]{ by using structured Gaussian 

elimination. Finally, data set M was produced while computing discrete logarithms modulo 

a prime p of 224 bits [ 10]. 

3. Lanczos and conjugate gradient methods 

We first describe the Lanczos algorithm. Suppose that we have to solve the system 

Ax= w (3. Il 

for a column n-vector :1:, where A is a symmetric n x n matrix, and w is a given column 

n-vector. Let 

w0 = w. 

Awo. 
(vt, Vt) 

V't u1 - tL'o 
(wo, vi) ' 

and then, for i 2': 1, define 

Aw,, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The algorithm stops when it finds a wJ that is conjugate to itself, i.e. such that ( w1, Aw1) = 0. 

This happens for some j :::; n. If 1L'j = 0, then 

is a solution to Equation 3.1, where 

(If wi j 0, the algorithm fails.) 

j-l 

:r = L:b;w; 
i=O 

(w;.w) 
b; = ( '' 

"111;,1!;+1) 

(3.7) 

(3.R) 

The Lanczos algorithm was invented to solve systems with real coefficients [ 11]. To 

solve systems over finite fields, we simply take Equations 3.3 to 3.8 and apply them to a 

finite field situation. This causes possible problems, since over a finite field one can have 

a non-zero vector that is conjugate to itself. However, this difficulty, as well as some other 

ones that arise, can he overcome in practice. 
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In addition to dealing with self-conjugacy, we have to cope with the fact that the systems 

we need to solve are in general not symmetric, but rather are of the form 

Bx=u, (3.9) 

where B is m x n, m ~ n, x is an unknown column n-vector, and u is a given column 

m-vector. (We assume that B has rank n, or at least that u is in the space generated by the 

columns of B.) We first embed the field over which we have to solve the equations in a 

possibly larger field F with IFI considerably larger than n. We then let D be an m x m 

diagonal matrix with the diagonal elements selected at random from F\ { 0}, and we let 

(3.10) 

A solution to Equation 3.9 is then a solution to Equation 3.1, and we expect that with high 

probability a solution to Equation 3.1 will be a solution to Equation 3.9. The random choice 

of D ought to ensure that the rank of A will be the same as the rank of B (this is not always 

true}, and that we will not run into a self-conjugate wi in the Lanczos algorithm. Experience 

has shown that this is indeed what happens. 

The Lanczos algorithm is not restricted to dealing with sparse matrices, but that is where 

it is most useful. At iteration i, we need to compute the vector Vi+ I = Aw; (v; = Aw;_ 1 is 

already known from the previous iteration), the vector inner products ( Vi+J, Vi+ I), (w;, Vi+ I), 

and (vi+l• v,), and then form wi+1 using Equation 3.6. The matrix A will in general be 

dense, even when B is sparse. However, we do not need to form A, since to compute Aw; 

we use Equation 3.10 and compute 

(3.11) 

Suppose that B has b non-zero entries. We will further assume, as is the case for the 

matrices arising in factorization and discrete logarithm computations, that almost all these 

b entries are ±1. Let c1 be the cost of an addition or subtraction in F, and c2 the cost of a 

multiplication. Then computing Bw; costs approximately 

multiplying that by D 2 costs 
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and multiplying D 2 Bwi by BT costs approximately 

for a total cost of about 

for each evaluation of Aw;. The computation of each vector inner product costs about 

nc1 + nc2, and so the cost of each iteration is about 

(3.12) 

so that the total cost of obtaining a solution is about 

(3.13) 

In this rough accounting we do not charge for the cost of accessing elements of arrays or 

lists, which will often be the dominant factor, especially when dealing with binary data. 

On the other hand, on some machines one can perform additions and multiplications in 

parallel. Therefore one should treat the estimate given by Equation 3.13 as a very rough 

approximation. 

In practice, B will usually be stored with rows represented by lists of positions where 

that row has a non-zero entry, and (in the case of non-binary problems) by lists of non-zero 

coefficients. Thus we need about b pointers and (for non-binary data) about b bits to indicate 

whether that coefficient is + 1 or -1. (Non-zero coefficients that are not ± 1 are relatively 

rare and can be treated separately.) The pointers normally have to be of at least pog2 nl 
bits, but one can reduce that by taking advantage of the fact that most indices of positions 

where the coefficient is non-zero are very small. In any case, storage is not a problem even 

for very large systems. In the implementations described below, full 32-bit words were 

used for all pointers and coefficients. The largest of the systems in Table 1 had b ;S 107 , so 

this did not cause any problems on the machine that was used. In fact, our algorithm had 

separate representations for both B and BT, which is wasteful. 

In a typical situation, we expect that the Lanczos method will be applied to a system 

that was processed first by structured Gaussian elimination, an~ so it will not be too sparse. 

As a result, the cost of the vector inner products ought to be dominated by the cost of the 

matrix-vector products, 2nbc1• As we will describe later, memory access times will often 

be the dominant factor in determining the efficiency of the matrix-vector product. 

In discrete logarithm applications, the system given by Equation 3.9 is usually overde­

termined, and so the aim is to find the unique .T that solves it. In applications to factoring, 
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though, one is looking for linear dependencies in a set of vectors. and it is necessary to 

find several such dependencies. This can be stated as the problem of solving the system in 

Equation 3.9 with B fixed, but for several vectors u, so that we need x 1, x2 , •.• , Xr such that 

(3.14) 

It is possible to solve all these systems at once, without rerunning the Lanczos algorithm 

r times. Let z1 = BT D2u1. Apply the algorithm as presented above with w = z1• This 

produces the vectors w0 , w 1, ... , Wn-l which are conjugate to each other; i.e. ( W;, Aw1) = 0 

fori =/:- .i. Now if 

then 

n-l 

:rk = L ck,Jwi, 
j=O 

n-1 

(w;, Axk) = L Ck,j(w;, Awi) = ck.i(w;, Aw;). 
j=O 

On the other hand, since Axk = Zb this gives 

(w,, zk) 
Cki = · ' (w· Aw·) 

" ' 

(3.15) 

(3.16) 

(3.17) 

Since the terms on the right side above can be computed during the i 1h iteration of the 

algorithm, the only substantial extra space that is needed is that for storing the partial sums 

xk. which at the end of the ith iteration equal 

' 
xk = L ck,1w1. (3.18) 

j=O 

Although the above analysis was based on the Lanczos algorithm, the derived complex­

ity bounds also serve as rough approximations for the conjugate gradient (CG) method [9]. 

The CG and Lanczos algorithms are very similar. The iterations for the two algorithms are 

slightly different, but the operation count is almost exactly the same. 

Both the Lanczos and the CG algorithms were implemented, Lanczos for solving equa­

tions modulo a large prime, CG for solving equations modulo 2. Both worked effectively, as 

will be described below. Both usually required n iterations to solve a system of size n. One 

unexpected problem was encountered, though. In the standard Lanczos and CG algorithms, 

it is not necessary that the matrix A in Equation 3.1 be non-singular. As long as w is in the 

linear span of the columns of A, the algorithms will converge. In the case of equations over 

finite fields, however, we observed that a system of less than full rank often gave rise to a 

self-conjugate vector, and thus to an abort of the algorithm. This phenomenon has not been 
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explored carefully. It was not very important in the cases where these algorithms were tried 

(computing discrete logarithms), since there the systems of linear equations are overdeter­

mined. This issue might be much more important in the case of factoring algorithms, since 

in that case one needs to find many linear dependencies modulo 2. 

The CG implementation uses auxiliary storage to carry out field operations fast. The 

field F is chosen to be GF(2'), with r = 19, 20, or 21. F is defined as polynomials of 

degree:::; r- lover GF(2) modulo a fixed irreducible polynomial of degree r. Elements 

o: E F are represented by a full word, a, with the digits in the binary representation of 

a corresponding to the coefficients of o:. This means that o: + .(J is represented by the 

exclusive-or of a and /3, and this operation is fast. Multiplication is carried out with the 

aid of an auxiliary array. Some primitive element~( E F is chosen, and then an array w(j), 

0 :::; j :::; 2r - I is generated, with w(a) foro: =I 0 equal to the discrete logarithm of o: to 

base r. Thus for o: =f 0 

0: = fw(a), 0:::; w(a):::; 2r- 2. (3.19) 

Foro: = 0, w(a) = w(O) = 2r+l - 3. Another auxiliary array t(j), 0 :::; j :::; 2'+2 - 6, is 

formed, with 

As a result, 

t(j) 

t(j) 

"Yj' 0 :::; j :::; 2r+ l - 4, 

0, 2r+l - 3 :::; j :::; 2'+2 - 6. 

o:/3 = t(w(a) + w(/3)) 

(3.20) 

(3.21) 

(3.22) 

for all o:, (3 E F, and thus each product in F can be computed using one integer addition, 

which on the machine that was used takes about as much time as an exclusive-or. The total 

cost of a multiplication in F is still higher than that of addition, though, because of the extra 

table lookups. Given the large size of the tables that are required which will not fit in the 

cache memory, on many machines it is likely to be faster to implement an algorithm that 

uses more operations but smaller tables. In practice, the time devoted to multiplication of 

elements ofF is so small that it does not matter what algorithm one uses. 

The implementation of the Lanczos algorithm is less efficient than that of CG. The 

very portable, and reasonably fast, multiprecision code that A. Lenstra and M. Manasse 

distribute with their factoring package [12J was used. When the non-zero entry in the 

matrix was ± 1 or ±2, addition or subtraction routines were invoked; approximately 90% 

of the non-zero entries in matrix B were ±I, ±2 in data set L. In the other rare cases, 
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multiprecision multiplication was invoked, even when it would have been more efficient to 

perform several additions. 

The implementation of the Lanczos algorithm solved system L modulo a prime of 191 

bits in 44 hours. The CG algorithm solved that system modulo 2 in 1.9 hours. Timings 

of about I 00 iterations of the CG algorithm on system E indicate that this system would 

require about 190 hours to solve. 

While quite large systems can be solved with the CG algorithm, the timings reported 

above are rather slow. For system L, Equation 3.13 indicates that the total cost ought to be 

around 

If each of c1 and c2 were around I machine instruction, the total run time would be about 6 

minutes. What causes the 1. 9 hour run time is the fact that on the computer that was used c1 

and c2 are much more expensive. This is due to problems of memory access, with the cache 

size too small to contain the full arrays. On different machines the performance would be 

quite different. Even on the SGI computer that was used, it is quite likely that one could 

obtain substantial speedups by arranging the data flow so that the caches are utilized more 

efficiently. 

4. The Wiedemann algorithm 

This algorithm is described carefully in [22]. As was pointed out by E. Kaltofen, the basic 

idea of this algorithm has been known in numerical analysis for a long time in Krylov 

subspace methods [23]. (It is rather interesting to note that the Lanczos algorithm is also 

a Krylov subspace method.) The main innovation in the Wiedemann algorithm is the use 

of the Berlekamp-Massey algorithm [15, 16], which in a finite field setting allows one to 

determine linear recurrence coefficients very fast, even for huge systems. Here we present 

only an outline of the method which will enable us to estimate its efficiency. Let us assume 

that we need to solve 

Bx=u. (4.I) 

where B is a sparse non-singular n x n matrix. (See [22] for methods of dealing with 

non-square and singular matrices.) B is not required to be symmetric in this algorithm. 

Suppose that the minimal polynomial of B is given by 

N 

2::::CjB1 = 0, N :S: n, c-{) :f: 0. (4.2) 
]=0 
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Then for any n-vector v, we have 

N 

:E cJBi+kv = 0, Vk 2:: 0. 
j=O 

(4.3) 

If we let vk = Bkv, then Equation 4.3 says that any one of the coordinates of v0 , v1, ••• , v2n 

satisfies the linear recurrence with coefficients eo, c1, ••• , eN. Given any 2n terms of a linear 

recurrent sequence of order :S n, the Berlekamp-Massey algorithm will find the minimal 

polynomial of that sequence in O(n2 ) operations. (There are even faster variants of the 

algorithm [1, 2, 4J which are likely to be practical for very large systems.) Hence if we 

apply the Berlekamp-Massey algorithm to each of the first K coordinates of the vectors 

v 0 , .•. , Vzn, in O(Kn2 ) steps we will obtain the K polynomials whose least common 

multiple is likely to be the minimal polynomial of B. Once we find eo, ... , CN, we can 

obtain the solution to Equation 4.1 from 

(4.4) 

If B has b non-zero coefficients, most of them ± 1, and c1 is again the cost of an addition 

or subtraction in the field we work with, then computation of v0 , ... , v2,. costs about 

an bc1 . (4.5) 

This is just about the cost of the Lanczos and CG algorithms. Wiedemann's method saves a 

factor of 2 by not having to multiply by both B and BT, but loses a factor of 2 by having to 

compute Bi v for 0 :S j :S 2n. (In the case of binary data, when all the non-zero coefficients 

are 1, the cost drops to nbc1, a reduction similar to that in the Lanczos and CG algorithms.) 

The Berlekamp-Massey algorithm is expected to be very fast, with a cost of cn2 for some 

small constant c, and this ought to be much less than Equation 4.5. Finally, obtaining u 

through Equation 4.4 will cost about 

(4.6) 

Thus if c2 is not too large compared to c1, or if the matrix is dense enough, the total cost 

of obtaining a solution using the Wiedemann algorithm is expected to be about 1.5 times 

as large as through the CG and Lanczos methods, even if K = 1 suffices to determine the 

minimal polynomial of B. 
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It is possible to cut down on the cost of the Wiedemann algorithm if one uses additional 

storage. If one uses v = u, and stores v0 , ••• , V 11 , then the computation of .r in Equation 4.4 

will only cost O(n2). In general, however, storing v0 , ••• , V 11 in main memory is likely to be 

impossible, as that involves n2 storage of n2 field elements. On the other hand, since each 

of the v1 is only needed once during the computation of x, the v1 can be stored on a disk. 

If disk access is sufficiently rapid, this method could be used to avoid the additional cost, 

and thus make the Wiedemann method perform just about as fast as the CG and Lanczos 

algorithms. 

Another way to eliminate the need for the extra n matrix-vector products in the Wiede­

mann algorithm (and thus reduce its cost so that it is no more than that of the CG and 

Lanczos methods) is to carry out the Berlekamp-Massey computation at the same time that 

the vk are computed. At the cost of keeping around several additional vectors, this should 

allow one to construct the solution vector right away. 

The assumption made above that taking K = I will suffice does not seem unreasonable 

for large fields. In the binary case, one can use an approach similar to that in the CG 

implementation described in Section 3 to generate as many sequences as the word size of 

the computer being used by taking the vector v to be over GF(2r). This approach would 

also make it possible to obtain several solutions at once (as in Equation 3.14), once the c1 

are determined. 

Most of the large systems that are likely to be solved in the near future are binary. 

In those cases, the discussion above implies that on a true random access machine, the 

Wiedemann algorithm is likely to be slower than CG or Lanczos by a factor of 3/2, and 

could approach their speed only by using substantial additional storage. However, on 

most machines data access is likely to be the main factor determining the efficiency of the 

algorithm. In the CG and Lanczos algorithms, the vectors wi that are multiplied by A have 

to be on the order of 20 bits, and for all foreseeable problems longer than 16 bits. In the 

Wiedemann algorithm, it is conceivable that it would suffice to work with 3 or 4 bit vectors. 

(This is a point that needs testing.) Therefore it is possible that one could utilize the cache 

much more efficiently. 

The general conclusion is that the Wiedemann algorithm is of about the same efficiency 

as the CG and Lanczos algorithms. However, it is quite a bit more complicated to program, 

and some crucial steps, such as the randomization procedures described in [22] for dealing 

with non-square and highly singular cases, have apparently never been tested. (Our analysis 

above assumes that they would not cause any problems.) It would be desirable to implement 

the Wiedemann algorithm and test it on some large systems. 
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5. Structured Gaussian elimination 

This method is an adaptation and systematization of some of the standard techniques used 

in numerical analysis to minimize fill-in during Gaussian elimination, with some additional 

steps designed to take advantage of the special structure present in matrices arising from 

integer factorization and discrete logarithm algorithms. The part of the matrix corresponding 

to the very small primes is actually quite dense, while that corresponding to the large primes 

is extremely sparse. (In all cases that the authors have looked at, there are even variables 

corresponding to some large primes that do not appear in any equation.) This fact was taken 

advantage of in all previous solutions to large systems, in that Gaussian elimination was 

always performed starting at the sparse end. Had it been performed starting at the dense 

end, fill-in would have been immediately catastrophic. 

By starting at the sparse end, substantial savings have been achieved. No precise 

measurements are available, but based on some data provided by R. Silverman (personal 

communication) it appears that about half the time was spent reducing n by n systems to 

about nj3 by n/3 systems, which were very dense. This indicates a factor of more than 

10 savings over ordinary Gaussian elimination that starts at the dense end. A. Lenstra has 

indicated that similar results occurred in his work with M. Manasse. 

The basic idea of structured Gaussian elimination is to declare some columns (those 

with the largest number of non-zero elements) as heavy, and to work only on preserving 

the sparsity of the remaining light columns. As was suggested by Pomerance and Smith 

[20], the set of heavy columns is allowed to grow as the algorithm progresses, instead of 

being chosen once, as was originally proposed [17]. In practice, the matrix would be stored 

in a sparse encoding, with rows represented by lists of positions where the coefficients are 

non-zero and with lists of the corresponding coefficients. To visualize the operation of 

the algorithm, it is easiest to think of the full matrix, though. The algorithm consists of a 

sequence of steps chosen from the following: 

Step 1 Delete all columns that have a single non-zero coefficient and the rows in which 

those columns have non-zero coefficients. 

Step 2 Declare some additional light columns to be heavy, choosing the heaviest ones. 

Step 3 Delete some of the rows, selecting those which have the largest number of non-zero 

elements in the light columns. 

Step 4 For any row which has only a single non-zero coefficient equal to ± 1 in the light 
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column, subtract appropriate multiples of that row from all other !(!ws that have 

non-zero coefficients on that column so as to make those coefficients 0. 

As long as only these steps are taken, the number of non-zero coefficients in the light 

part of the matrix will never increase. In the original description in [ 17], it was suggested 

that one might need to take further steps, involving subtracting multiples of rows that 

have ;:::: 2 non-zero elements in the light part of the matrix. However, experiments (some 

already mentioned in [ 17]) suggest that this is not only unnecessary, but also leads to rapidly 

increasing storage and time requirements, and so it is better to avoid such steps. 

Experiments mentioned in [ 17] used a pseudo-random number generator to create 

data sets that had the statistics of very large discrete logarithm problems over fields of 

characteristic 2. Those experiments indicated that structured Gaussian elimination ought 

to be very successful, and that to achieve big reductions in the size of the matrix that 

has to be solved, the original matrix ought to be kept very sparse, which has implications 

for the choices of parameters in factorization and. discrete logarithm algorithms. Those 

experiments indicated that if the matrix was sparse enough (either because one started with 

a sparse data set, or else because enough columns were declared heavy), one could expect 

a very rapid collapse of the system to a much smaller one. The results of the experiments 

that we performed on real data confirm these findings. Furthermore, they show that excess 

equations are a very important factor in the performance of the algorithm. If there are many 

more equations than unknowns, one can obtain much smaller final systems. 

Two versions of the program were implemented, one for solving equations modulo 2, 

the other for all other systems. (In the second version, coefficients were never reduced 

modulo anything.) Their performances on data set K were very similar, with the mod 2 

version producing a slightly smaller final system. The general versions never produced 

coefficients larger than 40 in that case. This situation would probably change if the matrix 

were not so sparse. 

The matrix is stored in a single linear array, with several smaller arrays being used to 

hold information about the status of rows and columns (whether a given column is heavy, 

for example). Each active row (i.e., row that has not been eliminated, was not dropped as 

unnecessary,.and has some non-zero entries in the sparse part) is stored as two adjacent lists, 

one for the indices of columns in the sparse part of the matrix that have non-zero entries, 

and one for the indices of the rows of the original matrix that make up the current row. (In 

the case of the general version, there are also corresponding 1ists of the coefficients of the 

matrix entries and of the rows.) When row j is subtracted from row i, a new entry for the 
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modified row, still called i, is created at the end of the linear array, and the space previously 

occupied by rows i and j is freed up. When available space is exhausted, the large linear 

array is compacted by invoking a garbage collection routine. If this measure does not free 

up enough space, then Step 2 is invoked. 

Many variations on the above approach are possible. Note that the number of non-zero 

entries in the light part of the matrix never increases. The only storage requirement that 

does grow is that for the lists of ancestor rows. Those, however, do not have to be kept 

in core. If one stores the history of what the algorithm does in a file, the ancestor lists 

can be reconstructed later. This is the approach used by Pomerance and Smith [20], for 

example, as well as by A. Lenstra and M. Manasse. Our implementation was motivated by 

the availability of substantial memory on our machine and the fact that when the ancestor 

lists get large, the heavy part of the matrix gets quite dense, which is undesirable, and so 

(as will be described later) it seems better to thin out the matrix by using Step 2. 

One advantage of the algorithm as described here is that it can be implemented in very 

little space. Our implementation keeps all the arrays in core, and is very wasteful in that 

it uses full 32-bit words for all pointers and coefficients. Since only a modest number of 

passes through the data were performed, one could keep the rows stored on a disk, and use 

core storage only for the more frequently accessed arrays that store information about row 

and column sums. 

In our implementation, Step 1 is applied repeatedly until no more columns of weight 1 

(i.e., with a single non-zero coefficient) exist, then Step 2 is used. The number of columns 

that are declared heavy affects the performance of the algorithm to some extent. We usually 

applied this step to about c/30 columns, where cis the number of currently light columns 

that have weight > 0. For matrices that were expected to reduce to very small size, such as 

data set K and sets derived from it, values around c/100 were used. Generally speaking, 

the smaller the number of columns that are put into the heavy part at a single time, the better 

the final result, but also more work is required. (Pomerance and Smith [20] use values 

of about c/1000, for example.) The columns that are declared heavy are those of highest 

weight. Step 2 is followed by Step 4, which is applied repeatedly. When Step 4 cannot be 

applied any longer, Step 2 (followed by Step 4) is applied again, and so on. At a certain 

stage, when the number of heavy columns is a substantial fraction of the expected size of 

the final dense matrix, Step 3 (followed by Step 1) is invoked. The selection of the point at 

which to apply Step 3 is very important, and will be discussed later. 

Very often, especially if the initial matrix is fairly dense, or there are not many more 

equations than unknowns, the final stages of structured Gaussian elimination produce rows 
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that have many ancestors, and so the heavy parts of those rows are quite dense. What was 

done to counteract this tendency was to first run the algorithm as described above, and then 

rerun it with two parameters c1 and c2 that were set based on the experience of the first run. 

When the number of heavy columns exceeded c1, Step 2 was invoked so as to bring this 

number all the way up to c2• After this application of Step 2, the sparse part of the matrix 

usually collapsed very quickly. The results of this step are described below and in Table 3. 

The description above is not very precise. The reason is that the various elements of 

the algorithm can be, and often were, applied in different sequences and with different 

parameters. The output is fairly sensitive to the choices that are made. No clear guidelines 

exist as to what the optimal choices are, since it was hard to explore all the possible 

variations. However, even very suboptimal choices usually lead to small final systems. 

The output of the structured Gaussian elimination program is a smaller matrix, which 

then has to be solved by another method. In our experience (primarily based on data set 

K), substitution of the results of solving the dense system into the original one gives values 

for almost all of the original variables in a small number of passes, each of which looks for 

equations in which only one variable is not yet determined. 

Table 2: Structured Gaussian elimination performance - factoring data 

Number of Number of No. Equations 
Size of 

Percent 
Data Set 

Equations Unknowns No. Unknowns 
Dense 

Reduction 
Matrix 

A 35,987 35,000 1.03 9,222 73.7 
B 52,254 50,001 1.05 12,003 76.0 
c 65,518 65,500 1.00 17,251 73.7 
D 123,019 106,121 1.16 12,700 88.0 
E 82,470 80,015 1.03 36,810 54.0 
E1 82,470 75,015 1.10 31,285 58.3 
F 25,201 25,001 1.01 11,461 54.2 
G 30,268 25,001 1.21 10,835 56.7 
H 61,343 30,001 2.04 19,0ll 36.6 
I 102,815 80,001 1.29 32,303 59.6 
J 226,688 199,203 1.14 90,979 54.3 

Structured Gaussian elimination was very successful on data set K, since it reduced it 

to set L very quickly (in about 20 minutes for reading the data, roughly the same amount 
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of time for the basic run, and then under an hour to produce the dense set of equations that 

form set L). It also worked well on the other systems. Table 2 summarizes the performance 

of structured Gaussian elimination on data sets A through J, and Table 4 does this for sets 

K,KO, ... , K6, and M. The size of the dense matrix is the number of unknowns in the 

reduced system. In each reduced data set, the number of equations exceeded the number of 

unknowns by 20. 

Table 3: Density of heavy matrix resulting from structured Gaussian elimination 

Average 
Data Set Ct c2 Weight of 

Dense Row 

B - - > 2,000 
B 8,000 16,000 456 
B 6,000 16,000 486 
B 6,000 20,000 149 
E - - 6,620 
E 20,000 50,000 260 
E 20,000 60,000 115 
E1 - - 6,172 
El 20,000 35,000 1,366 
E1 25,000 40,000 499 
K - - 1,393 
K 3,000 3,400 883 
K 3,000 4,000 346 
K 2,500 4,000 230 
K 2,000 4,500 140 
M - - 2,602 
M 6,750 9,750 295 
M 6,750 10,500 212 
M 6,750 11,000 177 

Obtaining a small set of equations is not satisfactory by itself in many cases, since 

the new system might be so dense as to be hard to solve. Table 3 presents some data on 

this point. For example, while set B was reduced to about 12,000 equations, the resulting 

set was very dense, with each row having on average 2:: 2, 000 non-zero entries. When 

the number of heavy columns was increased to 20,000 as soon as it exceeded 6,000, the 
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resulting dense matrix had only 149 non-zero entries per row. Similarly, for set E, the 

standard algorithm produces 36,810 equations, with 6,620 non-zeros each on average. If 

we only reduce the system to 60,000 equations, the resulting matrix has average row weight 

of only 115. 

Table 3 also shows how the density of final systems derived from discrete logarithm 

data could be improved. Data set K was reduced to a system in 3,215 unknowns, but that 

system had, on average, 1,393 non-zero entries per equation. By invoking Step 2 early, 

before the number of heavy columns reached 3,215,less dense final systems were obtained. 

Increasing the number of unknowns to 4,500 as soon as 2,000 heavy columns are obtained 

reduced the density of the smaller system to only 140 non-zero entries per equation. For 

data set M, a similar order of magnitude decrease in the density of the smaller system was 

obtained with less than a factor of two increase in the number of unknowns. 

Table 4: Structured Gaussian elimination performance - discrete logarithm data 

Number of Number of No. Equations 
Size of 

Percent Data Set Dense Equations Unknowns No. Unknowns Matrix 
Reduction 

K 288,017 96,321 2.99 3,215 96.7 
KO 216,105 95,216 2.27 3,850 96.0 
Kl 165,245 93,540 1.77 4,625 95.1 
K2 144,017 94,395 1.53 9,158 90.3 
K3 144,432 92,344 1.56 5,534 94.0 
K4 144,017 89,003 1.62 3,544 96.0 
K5 115,659 90,019 1.28 6,251 93.1 
K6 101,057 88,291 1.14 7,298 91.7 
M 164,841 94,398 1.75 9,508 90.0 

Table 4 presents the results of some experiments that show the influence of extra 

equations and variations in matrix density. All the runs were performed with the same 

algorithm on data sets derived from data set K and solved the system modulo 2. The 

performance of the algorithm on set K that is reported in Table 4 is better than that 

mentioned before (which reduced it to set L, which has 6,006 unknowns). This is partially 

due to working modulo 2, but mostly it results from use of somewhat different parameters 

in the algorithm, and not caring about the density of the final dense matrix. 
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The results for sets K2, K3, and K 4 might seem very counterintuitive, since the densest 

set (K4) was reduced the most, while the sparsest one (K2), was reduced the least. This 

appears to be due to the fact that heavy rows tend to have few entries in the sparse part of 

the matrix. (This has been checked to be the case in the data, and is to be expected, since 

in the discrete logarithm scheme that was used to derive set K [10], equations come from 

factoring integers of roughly equal size, so that if there are many prime factors, few of 

them can be large.) Thus, by selecting the heaviest rows, one makes it easier for structured 

Gaussian elimination to take advantage of the extreme sparsity of the sparse end of the 

matrix. 

The results obtained with set K may not be entirely characteristic of what one might 

encounter in other situations because this data set is much larger in the number of unknowns 

(as well as in the number of equations) than would be optimal for solving the discrete 

logarithm problem of [10]. If one selected only equations out of K that had roughly the 

25,000 unknowns corresponding to the smallest primes and prime elements of smallest 

norms, set K would have yielded a solution to it. The existence of all the extraneous 

variables and equations may enable structured Gaussian elimination to yield a better result 

than it would obtain in more realistic situations. 

The results for systems A to J were derived in a non-systematic manner; it is quite 

likely that much better results can be obtained by different choices of parameters. In the 

case of system K, and to some extent also systems KO through K6, more extensive tests 

were performed. They were all done with a linear array of length 1.6 x 107 for storage, 

and with variations only in the applications of Steps 2 and 3. The number of columns to 

which Step 2 was applied did not seem to have a major influence on the size of the final 

matrix. On the other hand, the decision of when to apply Step 3 was very important. In all 

the experiments that were carried out, essentially all the excess rows were dropped at the 

same time; the effect of spreading out this procedure was not studied. It appeared that the 

best time to apply Step 3, if one is simply trying to minimize the size of the final system, is 

when the number of heavy columns reaches the size of the final matrix, since in that case 

the system tends to collapse very quickly after the application of Step 3. In practice, what 

this means is that one has to experiment with several different thresholds for when to apply 

Step 3. Since the generation of the dense equations usually takes several times (and when 

the dense system is large, many times) longer than structured Gaussian elimination, this 

does not effect the total running time very much. 

On the basis of the experiments that have been performed so far, it appears that the best 

results are achieved if the point at which Step 3 is applied is chosen so that the steps that 
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follow reduce the matrix very rapidly, without any additional applications of Step 2. For 

example, the entry for set K in Table 4 was obtained by specifying that Step 3 be applied 

as soon as the number of heavy columns exceeded 3,200. The resulting matrix collapsed 

right afterwards. On the other hand, when the excess rows were deleted as soon as the 

number of heavy columns exceeded 3,150, the algorithm took a lot longer to terminate, 

resulted in a final matrix with 3,425 columns (but with the density of the final matrix lower 

than in the other case). At an extreme, set K2 (which corresponds to dropping 144,000 

rows right at the beginning of the algorithm) resulted in a final matrix of size 9,158. In the 

case of systems with fewer excess equations (such as set A), some results indicate that it is 

preferable to apply Step 3 somewhat earlier. 

The results reported here are very specific to our implementation. One of the essential 

features of the program was that it kept the lists of ancestor rows in core memory. Thus the 

algorithm was constrained most severely by the size ofthe big linear array, which essentially 

limited the total number of ancestor rows of the active rows. This had the desirable indirect 

benefit of producing a relatively sparse final matrix, but it undoubtedly made the algorithm 

behave quite differently than it would have otherwise. In particular, it must have skewed 

the comparisons between different data sets (since initially smaller data sets in effect could 

have more ancestor rows). It might be worthwhile to experiment with various variations of 

this method. 

In the case of data set J (which came from the factorization of F9), our version of 

structured Gaussian elimination reduced 199,203 equations to 90,979. A. Lenstra and M. 

Manasse used their version of the program to reduce set J to about 72,000 equations. Their 

program did not maintain ancestor lists, but the final matrix was almost completely dense, 

with about 36,000 non-zero coefficients per equation. Our program produced equations 

that on average had 7,000 non-zero coefficients. Looking at the output of the program, it 

appears that as soon as the number of heavy columns exceeded about 70,000, catastrophic 

collapse of the sparse part of the matrix began. The increase in the size of the heavy part 

was caused by space restrictions which bounded the size of the ancestor lists. In the F9 

case, since the final matrix was solved using ordinary Gaussian elimination, the decrease in 

the density of ~he final matrix that our program gave was probably not worth the incrt?ase 

in size. In other applications, especially when dealing with solving equations modulo large 

primes, and with sparser initial systems, our strategy is likely to be preferable. 

The main conclusion that can be drawn from the results of these experiments is that 

sparse systems produce much smaller final systems than do denser ones. What is perhaps 

even more important, however, is that excess equations substantially improve the perfor-
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mance of the algorithm. When one has access to a distributed network of machines with a 

lot of available computing time, but where s9lving the matrix might be a bottleneck (due 

to a need to perfonn the calculations on a single processor) one can simplify the task sub­

stantially by choosing a larger factor base and obtaining more equations. In extreme cases, 

when using the quadratic sieve, for example, and when only small machines are available, 

it might even be worthwhile not to use the two large primes variation of A. Lenstra and M. 

Manasse [13) (which in any case only appears to be useful for integers> 10100), or possibly 

not even the old single large prime variation. 

It appears that structured Gaussian elimination should be used as a preliminary step 

in all linear systems arising from integer factorization and discrete logarithm algorithms. 

It takes very little time to run, and produces smaller systems, in many cases dramatically 

smaller. For this method to work best, linear systems ought to be sparse, and, perhaps most 

important, there should be considerably more equations than unknowns. Producing the 

extra equations requires more effort, but it does simplify the linear algebra steps. 
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