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1 Introduction 

In [3] and [1] a new key exchange system was introduced whose security 
is related to the difficulty of solving the discrete logarithm problem in the 

class group of imaginary quadratic orders. Subsequently, in [5] and [4] a 
subexponential algorithm for computing those class groups was presented 

and it was shown how to use this algorithm and the index-calculus method 

to calculate discrete logarithms. 

In this paper we show how the output of the class group algorithm can be used 

to simplify the index-calculus algorithm in class groups considerably. This 
simplification enables us to use a slight modification of our implementation 
[2] of the algorithm of Hafner and McCurley to calculate discrete logarithms 
in fairly large class groups. At the end of the paper we will present the results 

of some experiments which show that the computation of discrete logarithms 
in class groups is very easy once the class group has been computed by the 
subexponential algorithm. 
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2 The idea 

Let G be & finite a.belian group. Let 

G = < 'Yl > X ••. X < ll > (1) 

be a presentation of G as a. direct product of cyclic groups. Suppose for 
a:, f3 E G we wish to find z E Z with 

Z_Q a - fJ· 

The method we suggest is very simple: Calculate the representations 

I l 

a = II -r;i , JS = II ~~; · 
i=l i""l 

Then (2) implies 
l l 

II -rrG· = II 7:i 
i""l i=l I 

which is solvable if a.nd only if the system of simulta.neous congruences 

(1 :5 i :5 l) 

(2) 

(3) 

where 9i = I < 'Yi > I (1 ~ i :5 l) ha.s a solution. This system can be solved 
by means of the generalized chinese remainder theorem. 

3 Application to class groups 

Let Cl be the class group of an imaginary quadratic order of discriminant 
D. The algorithm of Hafner a.nd McCurley starts from a generating set 
{'P1, ... , '~'•} for Cl and subsequently calculates a buis {k1 , ••• ,kJ.} ~ z"' 
for the relation lattice 
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Then the Smith normal form 

S = diag (gt, ... ,g, 1, ... , 1) E zlcxlc 

of B = (kt, ... , Q,.) is calculated, (g, > 1 ), 

S = u-1 BV 

with U, V E GL (k, Z). The transformation matrices U and u-t are also 
output of the algorithm. If we put U = ( 'Uij )1cx1c and 

lc 

Gi =II P'ji (1 5 i 5 l) (4) 
j=l 

then 
Cl =< Gt > X ... X < G, > 

and 
(1 5 i 5 l). 

Conversely, if we let u-t = (ut;)~cx~c then we have 

(1 5 i 5 k) (5) 

Moreover, if we are given a representation of an element in the class group 
on the generating system {1'1 , ••• , P~c}, then we can use (5) to come up with 
a representation of that element on the generating system { G1 ••• , G,}. 

Now suppose that we want to solve 

in Cl. In order to apply the ideas of the previous section it is sufficient to 
determine representations 

lc I 

A= II p~i . ' 
i=l 

lc I 

B = IIP~i (6) 
i=l 
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since those can be transformed into presentations 

(7) 
i=l i=l 

But those presentations are computed a.s follows: Let Pt, ... , Pic be first 
degree prime ideals such that 'P; is the equivalence class of p; ( 1 ~ i ~ k) 
and let A be the reduced ideal in the da.ss of A. For random exponent vectors 
~ = ( v1 , ••• , v~c) E [0, ... D -1 ]lc we calculate the reduced ideal A' in the cla.ss 

/c /c I 

of A TI Pi' until we find such an A' which can be written a.s A' = ll p;•. 
i=l i=l 

Then 
Je I 

A -IT,,_,, 
- Pi 

i=l 

is the presentation we were looking for. Analogeously, we can find such a 
representation for a. reduced ideal 8 in the class of B. If we use a.ll the prime 
ideals whose norm is bounded by L[,B] where for ,8 > 0 we use the notation 

( )

.IHo(t) 
L [,8] = exp Jlog D log log D 

a.s usual then each trial takes time L[O] and the probability for being able 

to factor A' is L [- 4~]. So the expected running time of the procedure that 

finds the representation on the original generating system takes time L[ 4~]. 
The computation of the representation on the generating system { G1 , ••• , G1} 

can be carried out in time L[,B]. The optimal value for ,8 is ,8 = i· Hence 

the expected running time for each new discrete logarithm problem is L [~]. 

4 Numerical results 

In the tables below we present the results of some experiments concerning 
the computation of discrete logarithms in cla.ss groups of imaginary quadratic 
fields. In the first table we give the following data.: 

• discriminant D, 
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• size k of the generating set {'Pt, ... , 'P.r.}, 

• size l of the generating system {G,, ... G!}, 

• values of 9i (1 ~ i ::::; l), 

• cla.ss number h. 

D k I h g;(1 < i < l) 
-(4·1024 +4) 1404 3 1 154 987 161 920 2, 4, 

144 373 395 240 
-(4 ·10"~ + 4) 1902 3 436 605 442 139 682 2, 2, 

109 151 360 534 920 
-(4 ·1034 + 4) 2609 4 189 652 590 177 168 096 2, 2, 2, 

23 706 5 73 772 146 012 
-4·F7 3257 2 17 787 144 930 223 461 408 2, 

8 893 572 465 111 730 704 

( 4·F7 = 4·(221 + 1) = 1 361129 467 683 753 853 853 498 429 727 072 845 828) 

In the second table we present the running times for the several stages of the 
algorithm. All timings given here are seconds CPU-time on a Sun 4/60-Sparc 
Station 1. 

• time t1 to compute the sets { G1, .•• , G,}, {gt, ... , gr}, the transforma­
tion matrices U and V and the class number h using our implementation 
[2]. 

• time t 2 to determine the representations (6) for given A and B, 

• time ts to transform the representation (6) for given A and B into the 
presentation (7). 

• time t4 to solve the simultaneous congruences (3). 
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Note that t 2 , t 3 and t 4 a.re very small compared to t 1 and so the effort for 
each new discrete logarithm problem in the same field is quite small. 

D tl t2 ta t4 
-(4 ·1024 + 4) 3418 5 4 <1 
-(4 ·1029 + 4) 18 587 21 5 <1 
-(4 ·1034 + 4) 123 404 37 10 <1 

-4·F7 511 978 96 18 < 1 
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