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INTRODUCTION 

The problem of  genera t ing  random elements in groups has d i r e c t  app l i ca t ion  

to  cryptography. For in s t ance ,  we l i k e  t o  know whether the DES permutations a r e  

random permutations of  t h e  264 poss ib le  64-bit words. The whole symmetric group 

i s  known t o  be genera ted  by c e r t a i n  k-functions ( 7 ) .  Another example i s  the 

Wyner voice encryption scheme (12)  which requires the production of l a r g e  

numbers of random rea l  orthogonal matrices.  N. J .  A.  Sloane has given a survey 

on t h i s  problem (11)  w h i c h  has led  t o  the following questions f o r  a given group 

G: 

1 .  How does one genera te  elements of G a t  random ? 

2 .  How can one t e s t  i f  c e r t a i n  given elements of G r e a l l y  a re  random ? 

3. Does a given subset H generate the whole group G ? 

4 .  I f  so, how long does i t  take ? 

In t h i s  paper, we cons ide r  t hese  questions f o r  the orthogonal group O(d) f o r  

any pos i t ive  i n t e g e r  d .  By looking a t  the Lie algebra o (d )  of O(d)  and one- 

parameter subgroups of  O ( d ) ,  we can find the generation o f  an a r b i t r a r y  element 

i n  terms of one-parameter r o t a t i o n  groups in uniform fashion. The length  of 

generat-ion can be determined. Random elements are generated using random 

number generator on the r ea l  parameter space of each one-parameter subgroup. 

The s t r u c t u r a l  theory  of Lie groups and  other g roups  seems t o  be useful 

t o  cryptography. For groups which a r e  n o t  Lie, one may t r y  t o  embed them i n t o  

Lie g roups .  The t ransformat ion  group theory a n d  ergodic theory emerge t o  be 

a l s o  very use fu l .  Ergodic theory can be considered to  be a genera l iza t ion  O f  
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the existing probabi l i s t ic  and s t a t i s t i ca l  methods. We certainly owe the idea 

t o  Shannon in h is  c l a s s i c  paper in 1949 ( 1 1 )  on the mixing property of  two non- 

commuting operations on some space. We only have t o  find an  operation which is 

the i terat ion of these two operations t o  a certain high degree t o  achieve 

relatively mixing s i tua t ion  i n  the space. We may point out t h a t  a qu i te  simple 

groupy such as the real numbers, can act  on a space in a very complicated way 

t o  yield a good cryptosystem. RSA system can be considered in th i s  manner ( 4 )  

as a transformation semigroup. 

ENCRYPTION OF ANALOG SIGNALS 

Wyner's voice encryption scheme offers high f ide l i ty  and hi$h securi ty  to  

encrypting voice s igna ls  over telephone l ines .  The technique i s  applicable to  

other analog s igna ls .  For the space of approximately bandlimited sequences 

( a ( l ) y . . . y a ( N ) ) ,  there  i s  known basis x ~ ~ . . . , x ~ ,  d=!2WN, where W <1 /2  is the 

bandwidth, called d i sc re t e  prolate spheroidal sequences (11) .  Each waveform is  

sampled every T seconds, where T i s  less t h a n  the Nyquist ra te .  We take a f i n i t e  

segment a = ( a ( l ) ,  ..., a(N)) of the sampled sequence and express i t  by 

d 
a = >: a .x  j = 1  J j' 

where the coef f ic ien ts  a r e  determined in the standard way and N i s  large enough 

t o  contain most  o f  t he  energy in the given wavefom. 

The scrambling o r  encrypting i s  performed by mu1 tiplying the coeff ic ient  

vector ( a  l , . . . , a d )  by a secre t  d by d orthogonal matrix Q ,  obtaining 

The encrypted sequence i s  

d 
b = >: b.x., 

j = 1  J J 

from which the encrypted waveform can be formed. The encrypted waveform has the 
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same bandwidth and approximately the same energy as the original waveform. Wyner 

has shown tha t  i f  N and d are  large enough and matrices Q are  chosen independently 

and uniformly from the orthogonal group, then his scheme offers  essent ia l ly  

perfect security ( 1  1 ) , ( 1  2 ) .  

THE ORTHOGONAL GROUP 

The orthogonal group O ( d )  acting on the d-dimensional Euclidean vector space 

can be characterized by the preservation o f  the Euclidean inner product. The 

group O(d) i s  a Lie group and a Lie subgroup of the general l inear  group GL(d) of 

a l l  nonsingular matrices.  The manifold (Lie g roup)  structure of GL(d) comes from 

the Euclidean vector space R Z d  as an open subset. For each Lie group G ,  there i s  

a Lie algebra 2 which i s  a vector space together with a Lie product [ , 3 . For 

matrix Lie groups, the Lie product i s  the commutator [X,Y] = XY - YX,  where X and 

Y are just matrices in R2d.  I t  i s  easy t o  see t h a t  the Lie algebra of GL(d) i s  RZd 

The key point i s  t h a t  the exponential mapping exp(tX) brings an element X in the 

Lie algebra g t o  an element exp(tX) in the Lie group G .  For matrix Lie g r o u p s ,  

where X i s  any element of in g. The s e t  of exp(tX) for  a l l  t in R i s  a one- 

parameter subgroup i n  G and the derivative of  exp(tX) a t  t = O  i s  X. T h u s  X i s  the 

velocity a t  t = O  o f  the  group exp(tX). 

The orthogonal g r o u p  O ( d )  and i t s  Lie algebra o ( d )  are well known including 

their  complete s t ruc tures  and  associated mathematical invariants. The group O(d) 

i s  n o t  connected and has two connected components; those having determinant +1 

form SO(d) ,  while those having determinant -1 form the other component which i s  

n o t  a g roup  because the ident i ty  matrix i s  n o t  in i t .  The dimension of SO(d) as  

well a s  O(d) i s  d(d-1)/2.  The dimension of  the Lie algebra o ( d )  i s  t h a t  of O(d) .  

Indeed, the Lie algebra o (d )  i s  also the Lie algebra o f  SO(d) .  The c lass i f ica t ion  

o f  Lie subgroups o f  a simple Lie group i s  important t o  our  consideration ( 3 ) .  



98 

RANDOM GENERATION 

I f  we take a s e t  of one-parameter groups exp( t X ,  ) , . . . ,exp( tX,) , a1 1 the  

f i n i t e  products o f  elements from these  groups generate an arcwise connected 

subgroup of SO(d). By Yamabe's theorem, i t  i s  a Lie subgroup. For m l a r g e  

enough, i t  conta ins  a maximal subgroup and has to  be the whole group SO(d). For 

example, SO(3) has no 2-dimensional Lie subgroup and m = 2 will  be s u f f i c i e n t .  

Thus up  t o  one-parameter subgroups, question 3. o f  Sloane i s  answered. ques t ion  

4 .  is  answered by f ind ing  a p o s i t i v e  in teger  n such t h a t  every element of SO(d) 

can be expressed a s  a product o f  elements selected from the given s e t  of one- 

parameter subgroups and the length  i s  a t  most n and by determining the minimal n 

over the c o l l e c t i o n  of  a l l  such s e t s  of one-parameter groups. Note t h a t  n depends 

on the  choice of the s e t  of one-parameter groups. 

The f i r s t  p a r t  i s  answered e a s i l y .  Let Sn be a l l  products o f  l eng ths  less 

than o r  equal t o  n .  Sn i s  compact and SO(d) i s  the union of Sn f o r  a l l  p o s i t i v e  

n .  By the Baire ca tegory  theorem, some S, contains an open s e t  whose t r a n s l a t e s  

cover S O ( d ) .  T h i s  open cover has a f i n i t e  subcover and the  r e s u l t  i s  proved. To 

determine the number n f o r  a given set of groups i s  r a the r  complicated. One 

needs t o  study the geometry of the (d-1)-sphere Sd-' on which SO(d) a c t s  and uses 

some mathematics i n  ( 3 ) .  The minimal number n can be shown t o  be d ( d - 1 ) / 2 .  

In order t o  genera te  random elements, we generate random numbers on the rea l  

parameters. F i r s t ,  we genera te  random numbers on the in te rva l  [O,l] . By i t e r a t i o n ,  

we ge t  the whole r e a l  parameter space. The t r ans i t i on  from SO(d) to  O ( d )  i s  easy. 

The index of O(d) ove r  SO(d) i s  two. 

Since a d i r e c t  product o f  low dimensional orthogonal groups i s  a subgroup Of 

a higher dimensional one,  we may increase the speed of encryption by segmenting 

the s i g n a l ,  applying lower dimensional groups and globally scrambling segments. 

This scheme provides a t r a p  door for the  system. 

The advantage of our  encryption system i s  t ha t  the s e t  of one-parameter 

g r o u p s  i s  f ixed once f o r  a l l  a s  well as the form o f  the random orthogonal mat r ix .  
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This constancy i s  usefu l  t o  hardwire the  box t o  eliminate the  in tens ive  computat- 

ion f o r  generating a random orthogonal matrix. The pseudo-random scheme (11) using 

Hadamard matrices does not  seem t o  generate t ru ly  random matrices.  I t  i s  proved 

t h a t  f o r  d g r e a t e r  than o r  equal t o  8, the subgroup G generated by the  set  S i s  

topologically dense i n  O(d ) ,  where S i s  a cer ta in  s e t  of matrices (11) .  For d = 8, 

the ca rd ina l i t y  of S i s  4954521600. For d = 48, the ca rd ina l i t y  becomes 1.1765.. . 
t ines  

topological c losu re  may have t o  be  extremely la rge .  

We l i k e  t o  p o i n t  ou t  t h a t  the  length of a f i n i t e  product i n  the 

Fina l ly ,  we may in t roduce  o t h e r  t r a p  doors to  our system t o  increase  the 

speed of encrypt ion ,  but our  opponent s t i l l  need to  decrypt the signal randomly. 

One may use pseudo-random number generators,  par t ia l  products o f  one-parameter 

subgroups or o t h e r  s t r u c t u r a l  cons t r a in t s  of Lie groups. The s t ruc tu re  of Lie 

groups i s  very e l e g a n t  and simple on one hand as we have seen above. On the 

other hand, extremely ha i ry  s i t u a t i o n  may occur. For instance,  we can embed 

a f r e e  group of  two gene ra to r s  in a compact Lie group. Then t h i s  subse t  conta ins  

a f r e e  subgroup of i n f i n i t e l y  many generators.  Anyway, I agree w i t h  G. R .  

Blakley ( 2 )  t h a t  group theory o f f e r s  a l o t  of opportunity f o r  c ryp to log i s t s  t o  

explore. 
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