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Abstraet. Several improvements to realize implementations for DES are discussed. One
proves that the initial permutation and the inverse initial permutation can be located
at the input, respectively the output of each mode in DES. A realistic design for an
exhaustive key search machine is presented.

1. Introduction

In [14] the reader find that hardware which is at the same time cheap and fast does
pot exist {1]. In this paper we propose mainly one efficient chip design for the DES.
Nevertheless, depending on the need of the user, different versions are possible. The
proposed version is designed for general purpose. In section 10 however o version for

ezhaustic search of the keys is illustrated. Important is that all versions can use the same
techniques.

The reader not familiar with the DES finds the NBS description of the DES in the
literature [9].

1.1. Problems and used techniques

By designing the chip one has to solve several technical problems as:
1. the complexity of the routing

2. the minimization of the needed chip area
3. the maximization of the desired speed
4

. the limitation of pin connections.
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The main problem in a DES chip is the routing. This can be illustrated by looking
at figure 1 which shows a straightforward realization of the DES-algorithm [4]. There we
see that the width of the interconnections {e.g. 64, 48 ....) will result in an enormous lost
of area and speed.

We can distinct 5 important techniques (see lfst) to solve previous problems.

1. a serial/parallel realization with shiftregisters of the permutations and of memory

and internal transport in order to reduce the number of interconnections on chip
{sections 3 and 4)

2. the use of equivalent representations of the DES
in order to optimize speed
(section 5)

3. pipelining of the different datablocks

in order to maximige the activity on the chip
(section 6)

4. rearrangement of the functional elements

in order to shorten the lenght of interconnections
(section T)

5. a modular controller with microprogramming
in order to ensure the flexibility of the design
(section 8)

Remark that as consequence of the needed coherence in the hardware solution, a lot
of simplifications proposed in previous papers (e.g. {3]) couldn’t be used.

In the next sections the routing problem for the transport part of the chip is solved
by using a serial-parallel structure. At the same time, we reduce the area needed for
IP, IP~! and PC; to about 1/20 of the area compared with a full parallel realization.
Important is that all this solutions do not slow down the datarate.

The routing problem for the part which carries out the 16 iterations (incl. the subkey
generation), is solved by rearranging the different elements. So we shorten the length of
the interconnections. This will be explained in extension in section 7 .

1.2. survey of the chip

We divide the chip in 2 important parts. The first called transport part, supports
the datatransport with the environment and also the internal transport between different
memories (incl. the permutations 7P, IP~'and PC;). The second called tteration hard-
ware, calculates the 16 iterations of the DES-algorithm without 7P and IP~! (from now
on we call these 16 {terations DES* ] incl. the generation of the subkeys.

We will first explain the basic idea used to simplify the realization of the modes. Later
on we will explain the other techniques used.
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On the first sight, the DES algorithm suffers from an enormous routingproblem. Conse-

quently the main goal of our design was to solve this problem by serialization and rear-
rangement without slowing down datarate.

Figure 1: the routing problem
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2. Equivalent representation for the modes: An introduc-
tion

In the Fibs publication [8], four modes of operation for the DES are defined. These
modes specify different ways to encrypt and decrypt data. We show that you can reorder
these modes so that TP and IP~! appear at an other location in the algorithm. We’ll
explain first the general idea and the motivation of this transformation. Next we’ll apply
this idea in the case of the 8 byte modes and the 1 byte modes.

Mostly the execution of permutations in hard- or software slows down the perfor-
mances. The idea is to put IP respectivily IP~! as close as possible to the input respec-
tivily the output of the mode. So you don’t have to carry out IP and P! on the data
in the feedbackloop. To move the permutations, we’ll use the following properties. A
permutation followed by a selection, can always be transformed into a selection* followed
by a permutation* (figure 2). A similar remark is true for an injection followed up by a
permutation. The elementary transformations as explained at crypto 83 will also be used

(3]-
2.1. 8 BYTES MODES

In the case of the ECB mode it’s trivial that IP is located at the input and IP~! at
the output.
In the CFB mode we can write on location A (figure 3) IP - TP~} and propagate them
over the exors, using the elementary transformations of Crypto-83 [3] page 182, we obtain
then the desired resuit.
A similar result is similar to find for the CBC and OFB modes.

2.2. 1 BYTE MODES

In CFB mode, a new input for the DES is formed out of the previous input for the
DES and the actual output ciphertext. The 56 most significant bits of the new input for
the DES come from the old input shifted 8 times to the left. This can be represented (fig-
ure 4) as a selection of 56 bits out of 64 bits ($1) together with an injection of 56 bits into
64 bits (I;). The 8 least significant bits of the new input for the DES are the 8 bits output
ciphertext. This can be represented by an injection I» of those 8 bits into 64 bits. To
form the output ciphertext the 8 most significant bits of the DES output are selected by
selection Sz, and exored with the plaintext. The content of these selections and injections
is showed in table 1 and 2. The selections and injections are similar represented as the
permutations of the DES in the NBS norm [9]. Now by applying some transformatlons
one is able to obtain the desired result.

Let us therefore put IP-IP~! at location B in figure 4. Using the property of figure 2
we obtain figure 5, where the effect of Q,(5,(64bits)) is the same as S(IP~1(64b1its)).
In figure 5 we put Q7! - Q4 at location C. By moving Q,, IP and IP~! (using Crypto
83) we obtain figure 6. Using the first property of figure 4, this figure is transformed into
figure 7, where Q,(S;(64bits)) is the same as S| (IP(64bits)) and similar for I,(Q.) and
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Figure 4: representation of the 1 byte CF B mode with selections and injections

S;=[ 9 10 11 12 13 14 15 16 Se=[ 1 2 3 45 6 7 8]
17 18 19 20 21 22 23 24
25 26 27 28 20 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 |

Table 1: the selections §; (64 —56) and §; (64 —8)
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“x” means that “ nothing ” is injected at that place

Table 2: the injections Iy (56 —64)and I, (8 —64)
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Figure 6: intermediate result of the CFB 1 byte mode derived from figure 5
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Figure 7: intermediate result of the CFB 1 byte mode derived from figure 6
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Figure 8: final result of the CFB 1 byte mode derived from figure 7 without permutations
in the feedbackloop
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Table 3: the selections S, (64 —8) and S (64 —56)
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Table 4: the permutations @, (8 —8) and Q;! (8 —8)
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156

x 1 2 3 4 5 6 7T L= 1 x x x x x x X
x 8 9 10 11 12 13 14 2 ¥ X X X X X X
x 15 16 17 18 19 20 21 3 ¥ x x x x X X
x 22 23 24 25 26 27 28 4 x x x X x X X
x 29 30 31 32 33 34 35 5§ x x x x x X X
x 36 37 38 39 40 41 42 6 X X X X X X X
x 43 44 45 46 47 48 49 7 x x x X x X X
x 50 51 52 53 54 55 56 ] 8 X x X X X X X |

Table 6: the injections IC (56 —64) and ID (8 —64)

I;(Qq). By calculating all these tables we can proof that Q.(Q) = I and Q4(Qa) = I,
with I the identity permutation.

In figure 8 we find the final result. We see that IP is no longer used in the feedback loop,
and that two 8 —8 permutations have appeared at the input and output of the data. The
content of the new permutations, injections and selections is showed in table 3, 4, 5 and 6.
Thy must be read as in the NBS representation [9].

A similar result for the OFB mode can be obtained using similar techniques as for
the CFB mode.

Remark that this equivalent representation of the modes can also speed up the soft-
ware, as explained in [14].

3. a fast serial/parallel realization for the permutations

The transport part of the chip will communicate with the environment using 8 bit
buses. The main reason for this is the limitation on the amount of connection pins of the
chip. However these buses allow us also to realize the permutations IP, IP~! and PC;
in an elegant way.

The idea is that by shifting data from a bus into a shiftregister, you carry out a
permutation in a hidden way. If you put an 8—8 permutation between the bus and the
shiftregister (see figure 9), you can realize a whole set of permutations. We found that
IP, IP~! and PC; can be realized using this set of permutations. ‘

3.1. permuting with shiftregisters: an introduction

When you send a block of 64 bit over an 8 bit bus, you'll send it byte after byte. i we
place at the end of the bus 8 shiftregisters of each 8 bit, we can enter sequentially these 8
bytes (8x8) (see figure 10). Normally, we’ll call the frst shiftregister the first byte of our
memory, the second shiftregister the second byte etc. (indicated with italic numbers e.g.
12).

What we see i3 that the numbers of the memory locations (1, 2, 3, ... , 64) and the
numbers of the data bits (1, 2, 3, ... , 64) don’t agree. Conclusion, we have carried
out a permutation. This permutation is represented by the vector at the foot of figure 10
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(for the interpretation of the vector notation, we refer to the Fibs publication of the data
encryption standard [9]). From now on we’ll call this permutation SR.

In the same way, we can show (see figure 11) that when we read out information of 8
shiftregisters into a bus, we carry out another permutation. You can easily check that we
get in that way the permutation SR™!. '

Now that we know SR and SR™?, we’ll search for which 8—8 permutations we need
to realize IP, IP~! and PG;.

3.2. realization of IP and IP!

If we want to have IP after we have shifted in, we have to do a 64—64 permutation
before SR, satisfying the following equation:

IP = SR after IP* or IP*=SR™! after IP

The result is shown in table 7. If we write e.g. bit 18 as the 2’ bit of byte 3 (or 23) we see

that IP* can be realized by carrying out on each byte the same 8—8 permutation IP**
(see table 8).

So the realization of TP has become very simple as shown in figure 12. This realization
is much smaller than a hardware connection path realizing the permutation. At the same
time, the execution of IP doesn’t consume extra time because it is carried out during the
input from the environment.

A similar method is used to realize IP~1.
IP7Y = 1P after SR~ or IP™Y* = IP~!* after SR

Note that it is possible to use the same shiftregisters to carry out /P and IP~!. This can
be done simultaneously by reading 1 byte out every time you read 1 byte in (see figure 12).

3.3. realization of PC,

For PC, we have a more complicated solution because of the irregularity in PC [3].
This can be shown by rewriting the notation of PC; (table 9). I we could turn the second
part of the permutation PC;, we get the permutation SR (for 7 shiftregisters of 1 byte ).
This is exactly the way we will realize the permutation.

First we realize S R(7x8) with 7 shiftregisters during the input of the key in a similar
way as for IP (see the path in figure 13). Then we rearrange these seven registers
in two registers of 28 bit. The first register of 28 bit goes from the first byte up to half the
fourth byte. The second register goes in reversed order from the last byte up to half the
fourth byte (see the ~ - - — - path in figure 13). This reversed order of the second 28 bit
register permits to turn the second part of the key at the moment that those 2 registers
of 28 bit are loaded in a following memory unit of 2 times 28 bit (see figure 13).

This realization consumes a little bit more time, but this isn’t a drawback because
you don’t change the key very often. A variant is possible which change the 2 keys e.g. in
1 clockperiod but this consumes a little bit more place. The fact of using 2 memory-units
for 2 keys can be used for the multiple key mode. We'll take the first memory as the
major-key register and the second register as the active-key register. Therefore we only
have to add 2 feedbacklines which carry back the content of the active-key register to the
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R* and R are permutations

Figure 9: With this shiftregister structure it is possible to carry out a set of 64—64
permutations.

IP*=[ 2 4 6 8 1 3 5 7
10 12 14 16 9 11 13 15
18 20 22 24 17 19 21 23
26 28 30 32 25 27 29 31
34 36 38 40 33 35 37 39
42 44 46 48 41 43 45 47
50 52 54 56 49 51 53 55
58 60 62 64 57 59 61 63 |

Table 7: IP* = SR™! after IP

20 47 62 8; 1o 32 52 7o
2; 45 63 8; 13 335 53 T3
24 44 64 8y 14 34 54 T4
2; 45 65 85 1z 35 55 Ts
2¢ 46 6¢ 8 lg 3¢ 5¢ Tg
27, 4; 67 8; 17 37 57 7y

IP*=[ 2 4 6 8 1 3 5 7]

Table 8: IP* = 8 times IP**
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the input is:
bytel= 1 2 3 4 5 6 7 8
byte2= 9 10 11 12 13 14 15 18
byte3=17 18 19 20 21 22 23 24
byted=25 26 27 28 29 30 31 32
byte5=33 34 35 36 37 38 39 40
byte6=41 42 43 44 45 46 47 48
byte7=49 50 51 52 53 54 55 56
byte8=57 58 59 60 61 62 83 64

the result is:

—|57  1[49 2141 $[83 725 5[17T 6] 9 7|1 &)

— [58 0[50 10[42 11]34 12[26 13]18 14|10 15|

(-]

16

— [59 17[61 185[43 19385 20|27 21|19 £2|11 23] 3 2{|

— |60 25|52 26|44 27[36 2828 29[20 30[12 31| 4 32|

— [B1 3353 3/[45 35|87 86|29 37|21 88|18 30| 6 40]

— |62 {154 4246 4S[38 {4[30 }5[22 46]14 47 6 43|

— |83 4955 50|47 51[39 52[31 53[23 54|15 55| 7 56|

—. |84 57[668 58748 50[40 6032 61]24 6216 63] 8 64|

the realized permutation
SR=| 57 49 41 33 25 17 9
58 50 42 34 26 18 10
59 51 43 385 27 19 11
60 52 44 36 28 20 12
61 53 45 37 29 21 13
62 54 46 38 30 22 14
63 55 47 39 31 23 15
64 56 48 40 32 24 16

0 =¥ TN

]

the stalic number indicates a memory location and the boldface number a data bit

Figure 10: If you shift 8 byte from a bus into 8 shiftregisters, you get the permutation
SR (a permutation is represented in a similar way as in the NBS norm of DES)
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({2 s 4561715 ] —

|9 (10 11 J12[18 14 [15]16 | —

|17 |18 [19 [20 J21 [22 [ 28 [ 2f | —

|25 (26 (27 [28 [ 29 [50 [81 [32 ] —
133 194 [35 (86 |37 [958 [39 (40 | —
42 (42 T48 T4 (45 [46 147148 | —
(49 [ 50 [ 51 [52 [58 [ 54 [55 [56 | —
|57 [ 58 [59 [60 [61 [62 [68 [64 |

the output is:

bytel=8 16 24 32 40 48 568 64
byte2=7 15 23 31 39 47 55 63
byte3=6 14 22 30 38 46 54 62
byte4=5 13 21 29 37 45 53 61
byteb=4 12 20 28 36 44 52 60
byte8=3 11 19 27 35 43 51 59
byte7=2 10 18 26 34 42 50 58
byte8=1 9 17 25 33 41 49 57

t
SET=|

=3

e realized permutation

16 24 32 40 48 56 64
156 23 31 39 47 55 63
14 22 30 38 46 54 62
13 21 29 3T 45 53 61
12 20 28 36 44 52 60
11 19 27 35 43 51 59
10 18 26 34 42 50 58

9 17 25 33 41 49 57 |

=W ®

Figure 11: by reading out of a shiftregister you realize the permutation SR™!
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major-keyregister so that no key is lost by the transport from the major-key register to
the active-key register (see figure 13). This configuration can also expanded with a third
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Figure 12: realization of IP and IP~! with the same shiftregister

output

bus

keyregister which is very interesting for multiple encipherment of the active key [12]

4. a fast serial/parallel realization for memory and trans-

We’ll explain our internal interconnection system built out of shiftregisters and mul-

port

tiplexers. This system is small, very fast and flexible enough for the DES-algorithm.
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Table 9: the structure in PC; and the relation with SR
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= the path to read in a new key

————— = the path to change the 2 key’s.

Figure 13: realization of PC; by 2 subsequent memory transports
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HR1 and HR2 are additional registers. The workregister is the memory unit in the
iteration hardware (see section 9).

Figure 14: the fast internal transport organization. It’s used to calculate the modes (the
exors are omitted from the figure for simplicity)

A common way to organize transport is with one databus and an addressbus. Then
the memory usually consists out of RAM and ROM units. The advantage of this solution
is the fexibility of addressing and the possibility of transport between many devices far
from each other.

We took another approach because we don’t need those advantages. We chose to
organize the memory in 4 shiftregister units of 8 byte (8x8) each. Instead of one bus, we
made a connection path from every output to each of the four imputs (included his own
input) (see figure 14). For our design this structure is faster, small and enough flexible.

It’s faster because of two reasons. Pirst, it isn’t necessary to specify a new address for
every byte. Second, it can transport 4 bytes simultaneously. So the maximum capacity
is 32 byte in 8 clockperiods. We’ll use this structure to calculate the feedbackmodes.
This is a time critical job because it isn’t possible to pipeline it with something else (see
section 6).

It is difficult to explain why this structure is very small. On the first sight you
may think to discover a new routing- problem. This isn’t so because the length of the
connections can be kept small by a good floorplan. In section 9.2 we describe a floorplan
for a nMOS realization. Most interconnections between these registers aren’t longer than

150pm. It was even possible to place all the interconnections and multiplexers on 0, 5mm?
(88 version).
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This structure has a smaller flexibility because we always have to transport all 8
bytes in the same sequence from one unit to the other. Transporting less will break up
every byte by partly shifting it out and partial shifting something else in. It is clear that
this partial transport is a “ wrong ” way to transport entire bytes. But as we see in
section 5.1, we can use this “ wrong ® way of transport to execute the 1 byte maodes in
a very simple way. Remark that to execute the modes we ‘also need to incorporate some
exors in the structure. This can be done in many ways depending on the used technology.
One method well suited for nMOS is adding 8 fixed exors between the workregister and
the input output register and also 8§ fixed exors between the workregister and the HR1 (=
additional register 1). The output of those exors are connected to each multiplexer again.
It can be shown that this configuration is sufficient to calculate the modes.

'3

4.1. a possible modification for smaller, but slower devices

Up to now, we’ve used units of 8 x 8 shiftregisters for the input output registers and
the other registers of the fast internal transport. However it’s also possible to construct
an equivalent version with 4 shiftregisters of 16 bits long [5].

The difference between the two is that the interconnection hardware is only half of
the size for the 4 x 16 version. On the other hand the 4 x 16 version is also 2 times slower
for the transport of data. Therefore the 4 x 16 version is only usefull for a slow and small
version (< 5 Mbit and +dmm?).

5. Equivalent representations
5.1. modes

As explained in gection 3.2, we can easily realize IP when we transport data from an
8 bit bus into a shiftregister. This consumes no extra time when it can be combined with
the input and output from and to the environment. However, this method needs a lot of
time when you have to use it for data already on chip. Therefor it’s very usefull to move
the permutations IP and IP~! out of the feedback loop of the modes to the input and
output of the chip.

Figure 3 shows clearly that for the 8 byte modes the solution is found. However for
the 1 byte modes, a little bit more explanation is needed to show why the result in figure 8
is usefull. The permutations Q4 and Q* of figure 8 are the permutations IP* and IP™!*
we used to read in and out (section 3). The realization of the selections and injections
18 very simple with our internal tansport structure (section 4). We saw there that you
can only transport entire bytes if you transport all 8 bytes together by shifting 8 times
the shiftregisters. However if you shift those registers only once, you will eject the last
bit of every byte (=85,). The other seven bits of every byte (=53) will be shifted to the
seven last places of every byte (=I.) and there will enter a new bit on the first place of
every byte (=I). This new bit is the ejected bit exored with the correspondent bit of the
incoming byte of data.

5.2. the permutation P

Because the permutation P will be realized hardware with wires, it’s obvious that the
needed area can be diminished by a well choosen modified P [3]. How you get the optimal
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Figure 15: optimization of P for a hardwired realization

modified P ig shown in figure 15.

5.3. optimization of the 18 iterations

Starting from the official representation of the DES algorithm, we see that each iter-
ation starts with the evaluation of the non-linear function, and ends with reversing the
2 datablocks. If you reorder [13] the algorithm as in figure 16, it becomes clear that the
exchange can be done at the same moment as the evaluation of the non-linear function.
In this way, the time to execute DES* (=DES without IP and IP~1) is almost equal to
the time needed for 16 evaluations without losing time by exchanging the 2 datablocs.
As consequence, the evaluation of the non-linear function is the time critical path of the
algorithm. The only small drawback is that at the end an extra exchange of the right and
left block is required.

6. Pipelining

The aim of the pipelining is to prevent that datarate is slowed down by the time used
for datatransport between chip and the environment. This is very important because this
commuunication is slow.

In our design we distinct 3 sections able to work simultaneously: an input section,
a DES* section and an output section. While the input section is entering the next
datablock, the DES* is working on the actual datablock and the outputsection is busy
to releaze the previous datablock. When these 3 sections have finished, there is a large
amount of data which has to be exchanged between the sections. The operation deing
this job is called the transfert. The transfert is executed with the structure described in
section 4 . This operation calculates also the modes.

To illustrate the functioning of the device, especially to show how the modes are
realized, we have in figure 17 a representation of the activity in function of time e.g. for
the modes ECB and CBC. Note that HR1 and HR2 (additional memory 1 and 2) are
memories needed in the feedbackloop of the modes.
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Figure 16: optimization of the 16 iterations

7. Rearrangement of the functional elements

The aim of rearranging is not to avoid the interconnections but to shorten the length.

A large part of the routing is shortened by mixing the memory cells in the iteration
hardware. If you number the cells from 1 to 64 and put them in the following order:
(1 33), (2 34), (3 35), (4 36), ... (29 61), (30 62), (31 63), (32 64), the connected cells
come next to each other. So the connections become shorter than 100pm. This structure
can be build with 32 cells each containing a schiftregister of 2 bit and 1 exor.

The second way to shorten lines relies on the fact that a memorycell is much larger
than an interconnection. So we’ll put the lines from the subkey, the lines from the memory
and the lines from the S-boxes wired next to each other. In this way we have designed
a floorplan for the iteration hardware that minimize the length between the memory and
the S-boxes that is part of the time critical path (cfr. section 5.3).

8. Modular construction of the controller

Microprogramming is known as a good but slow way of controlling. The speed problem
can be solved by using a lot of small units. Every unit is able to carry out omne class of
tasks. Above this units for the tasks is ome unit to coordinate the cooperation between
the units. The communication between this coordination unit and the task units happens
with microcode. There is no communication between the task units so that modularity
and testability 13 assured.



167

block k

input
bus

pES™

HR1

HR2

output
bus

oy :shows that this part is active

. :shows the transfert of data between the different memories.

Remark for CBC-decipher that the calculation of DES* introduces a supplementary delay
of the data in the main path so that in the feedback path 2 delays are needed instead of
1.

Figure 17: the activity in function of time for the modes ECB and CBC-decipher
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9. The entire design
9.1. the architecture

In figure 18 the survey of the total architecture is shown. Depending on the design
strategy, used technology and the desired features some elements may have to change.
The solution of the figure is very well suited for an nMOS chip with a speed of about
14mbit /sec. .

As seen in section 4, there are 4 data memories of 64 bit (=8 x 1 byte). The memory
called workregister is a special one because it can work in 2 different ways. It can be
switched as 8 shiftregisters of 1 byte, or as 32 registers of 2 bit to perform the 16 iterations
(see section 7).

There are also 2 key memories of 56 bit(=7 x 1 byte). The parity check is carried
out on each key byte that is entered for the first time. With this configuration you can
memorize 2 keys e.g. a major and an active key. When you enter a new key, you'll
overwrite the key which was in the input key register.

In the chip we have the following three transports:

1. the internal transport, mainly used for realizing the modes
2. an inputbus

3. an outputbus

The first serves to transport data in a fast way between the 4 data memories (see section 4).
The second and the third serve for datatransport between the environment, one fixed
register of 64 bit (called the input output register) and the active key register (see figure 12
and 13).

Maybe it is now a good moment to take attention on the conformity of the used
techniques. E.g. reading in the data needs shiftregisters to realize at the same time IP;
with those shiftregisters a very fast transport is possible; we need that fast transport to
allow the pipelining and the execution of the modes; to allow this way of transport, the
workregister has to be a shiftregister; on the other hand, the iterations can be carried
out very fast using cells of a shiftregister,... etc.. It is with this conformity that we could
design a chip which at the same time is very fast and very small.

9.2. the floorplan

In figure 19 you find a floorplan of an nMOS design. The total area used is about 9
mm? and the transistor density is more than a thousand transistors on 1 mm?. In the
foorplan you can destinct 4 important parts.

1. The datapad doing the 16 iterations (+ the subkey generation)
2. The memories and multiplexers of the fast internal transport

3. The input-output bus
4

The controllers
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Figure 18: survey of the new architecture
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10. a modified design for exhaustic search of the keys

The idea to cryptanalyze the DES by an exhaustive search was proposed by Diffie
and Hellman [15]. An improvement is now presented, which mainly solves the problem of
the complexity of the machine and its cooling.

A chip builded for exhaustic search of the keys must have 2 properties. First it has

to be very fast and second it must work with a minimum of communication with the
environment.

To make it fast we’ll use the property that an exhaustic search of the key can be
realized using only the ECB mode. Therefore we will divide the path calculating the
non-linear function in e.g. 3 section and pipeline those sections. There is however the
problem that we need the result of this non-linear function to calculate the new input
for the non-linear function. This will be solved by calculating simultaneous DES for 3
different keys. To do that we need three workregisters and three keyregisters. In that way
the speed can be improved by a factor 3.

To minimize the communication with the environment, we’ll generate the subsequent
keys on chip and we’ll do the check of the result also on chip. To generate the subsequent
keys, we enter once a start value for the key in a counter on chip and then augment this
value each time by 1. By giving each chip a good startvalue, the whole key space will be
checked. To check the result, we enter only once the 2 datablocks for which we search the
key. The first block will serve as input for the DES algorithm and the result of the DES
algorithm will be compared with the second datablock on chip. If the result is equal to
the second block, an interrupt signal is given. In this way, only a ucomputer and a big
power supply is needed to command e.g. 10,000 chips.

Important is at which speed this device can work! To calculate three outputs you
need:

48 (=16 iterations) +2 (=delay in the pipeline) +3 (=time for in and output) = 53
clockeyecli.

At a clockfrequency of 20 Mhz you can check £1.13 - 10° keys in one second. Suppose
that one device (incl. connection) costs 40$ and that you spend 1,000,000 $, you can with
2.5 -10% devices calculate 2.8 10'? keys in one second, or 1104 keys in one hour. So you
calculate 1.7 - 10'® keys in only I week. In total there are 7.2 - 10*® keys. On the avarage
you will find the key after you’ve tried 3.6 - 10'® keys and for this you need about two
weeks. If a choosen plaintext attack is possible, the time needed to find the key is devided
by 2 [11]. It may also be necessary to make allowance for more than one key satisfying:
cypherblock(64bit) = DES(plaintext key) {7].

The proposed hardware can be designed for CMOS such that no power problems
would exist.

11. Obtained results

Without exaggerating, we may expect that a speed up to 20 Mbit/sec. is possible to
obtain. Maybe higher speeds should be possible, but this should certainly cost a large
amount of power and area.

It’s easy to calculate the speed by hand. Because of the pipelining, the chip is some-
times doing many tasks simultaneously (see figure 17). The chip is so designed that the
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clock datarate area
3Mhz 3,4Mbit 2x2 mm”
5Mhz 5,5Mbit
10Mhz 11 Mbit 3x3 mm?
14Mhz 15,5Mbit
18Mhz 20 Mbit 4x4 mm?

Table 10: datarate in function of the clockfrequency (with the expected area in 3um
technology)

evaluation of the 16 iterations takes normally most of the time. So the time needed for
encrypting or decrypting each datablock is the time for 16 iterations augmented with the
time for the transfert. In our design, 1 iteration needs 3 clockcycli. Finally, we also need
2 clockeycli to allow the controller to jump from ome to an other task unit (section 8).
Together we get:

Transfert: 8 clockperiods

DES* :48 clockperiods
jumps : 2 clockperiods
Total :58 clockperiods

This means 64/58 bits in one clockperiod. To know the total speed you have to estimate
the clockfrequency. In our design there are 2 to 3 gatelevels for every 1/2 clockperiod (2
phase clock){10]. So a high clockspeed can surely be obtained. In table 10 we give some
frequencies and the corresponding speed. We also indicate the possibility to exchange
speed versus area (and power). One can agree that the design is very compact compared
with his performances. Smaller technology should futher minimize the area.

12. Conclusions

In this paper we presented several improvement in order to realize faster and smaller
chips.

We also proved that the initial permutation and the inverse initial permutation can
always be located at the input, respectively the output of each mode.

To use DES in a strong way one has to change frequently the active key (e.g. every 10
seconds) and this active key must be multiple enciphered with different major keys before
transmision.
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